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1 THE BASICS OF DYNAMIC OPTIMIZATION (CATCHING FISH) 10

1 The Basics of Dynamic Optimization (Catch-

ing Fish)

The Euler equation is the basic necessary condition for optimization in dy-
namic problems. Here we discuss the Euler equation corresponding to a
discrete time, deterministic control problem where both the state variable
and the control variable are continuous, e.g. they are members of the real
line. Later chapters consider continuous time and stochastic control prob-
lems and problems where the control or state variable can take a finite or
countably infinite number of values. This chapter also introduces the dy-
namic programming equation (DPE) as an intermediate step in deriving the
Euler equation. Later chapters consider the DPE in a more general set-
ting, and discuss its use in solving dynamic problems. We show that by
evaluating the Euler equation in a steady state, and using the condition for
local stability of that steady state, we can approximate the optimal control
rule in the neighborhood of the steady state and conduct comparative statics
exercises. Final sections discuss generalizations to the simple problem that
we use to introduce the material, and also discuss an analogy to the dynamic
programming problem. An appendix contains a technical treatment of this
material.

1.1 A Heuristic Derivation of the Euler Equation

We use a simple version of a fishing model to provide a heuristic derivation
of the Euler equation. The stock of fish might be measured by the number
of fish or the weight of the population, known as the biomass. Denote the
stock of fish at time t as xt and the harvest at t as ht. After harvest, the
remaining biomass is yt = xt − ht, also called the escapement. The growth
function F (yt) determines the stock in the next period:

xt+1 = F (yt). (1.1)

In the problem here, x is the state variable, and equation 1.1 is referred to
as the equation of motion, or the state equation. The control variable is h,
and y (escapement) is simply a definition.

Profits in the current period, π (x, h), depend on the state and the control
variables. This formulation allows harvest costs to be stock dependent;
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for example, it may be more expensive to catch fish when the stock is low.
The price might depend on the harvest or be exogenous and constant. The
former case corresponds to the situation where the decision maker faces a
downward sloping demand function, either because she is a monopoly or a
social planner; in the latter, case, the decision maker is a price taker. The
discount factor is 0 ≤ β < 1 and the objective of the planner is to maximize
the present discounted flow of harvests from the current period, time t, to
infinity:

max{hτ}∞τ=t

∑∞
τ=t β

τ−tπ (xτ , hτ )

subject to xτ+1 = F (xτ − hτ ), τ ≥ t, and xt given.
(1.2)

For the rest of this chapter we take the initial time to be t = 0 in order
to simplify notation. The predetermined value of the state variable at the
initial time is referred to as the initial condition.

This optimization problem is autonomous, meaning that it has no dependence
on calendar time except via constant discounting. In particular, time enters
neither the profit function π nor the growth function F explicitly, but only
indirectly because the arguments of these functions change over time. In
addition, the horizon for the problem is infinite. For example, if we were
to solve problem 1.2 at time s ̸= 0 given xs = x0 (i.e. with the same initial
condition), we would have exactly the same optimization problem. The
solution would also be the same, with the obvious adjustment for time index.
We frequently work with autonomous problems, but the methods discussed
in this chapter (excluding the steady state analysis) are also applicable for
non-autonomous problems.

The first questions that the researcher creating a dynamic model answers are
“What are the control variables and what are the state variables?” The next
questions are “What is the single period payoff (here, π) and what is the
equation of motion (here, xt+1 = F (xt − ht))?” These are the ingredients of
the optimization problem.

We want to find a necessary condition for an optimal solution. The solution
to the problem can be written in two ways. We can write it as an infinite
sequence of control variables, {h∗τ}

∞
τ=0, where the ∗ denotes optimality, or

we can write it as a function of the state, h∗ = g(x), for some function g.
The first representation is usually called the open loop form and the second
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is usually called the feedback form. The function g is referred to as the
control rule. Note that time is not an argument of this function, because,
as we observed above, the solution to an autonomous control problem does
not depend on calendar time. For a non-autonomous problem, the control
rule typically does depend on calendar time.

Here we work with the open loop representation. If {h∗τ}
∞
τ=0 is the optimal

solution, then it must be the case that any perturbation from that solution
yields a zero first order welfare change. Because we have not yet established
optimality of the trajectory {h∗τ}

∞
τ=0 we refer to it as a candidate for optimal-

ity; we also refer to the trajectory of the state variable, when this sequence
of control variables is applied, as a candidate trajectory of the state variable.

For an interior optimum of a familiar static problem, optimality requires that
the derivative of the maximand with respect to the control is zero. Recall
that the first order Taylor approximation of a function, with respect to a
control variable, equals the value of that function at a point, plus the deriva-
tive of the function with respect to the control variable multiplied by the
change in the control variable. Thus, the first order condition in the static
problem implies that at an optimum point the first order term in the Taylor
approximation of the function is zero. An analogous condition holds in the
dynamic problem. The compication in the infinite horizon setting is that we
are looking for an infinite sequence rather than a finite number of control
variables. Fortunately, we can obtain the necessary condition for optimal-
ity by considering a particular change, or perturnbation, in the sequence of
control variables, in the neighborhood of the candidate.

Suppose that at an arbitrary time t (not necessarily the initial time) we make
a slight change in the control ht relative to the candidate trajectory and then
make an offsetting change in the control in the next period, ht+1, so as to
leave the state variable xt+2 equal to its level under the candidate trajectory.
Using the fact that xt+2 = F (F (xt − ht)− ht+1) = F (yt+1), the requirement
that the perturbation not alter the value of xt+2 implies

0 = −dF (yt+1)

dy

(
dF (yt)

dy
dht + dht+1

)
⇒ dht+1

dht
= −dF (yt)

dy
.

If we increase current harvest by ε then we have to decrease next period
harvest by εdF (yt)

dy
in order to return the state variable to its candidate tra-

jectory. The perturbation alters the level of xt+1, but leaves unchanged the
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level of the state at all other times. The perturbation changes the value of
only ht, xt+1, ht+1. The present value at time 0 of the ϵ−perturbation at
time t therefore depends only on the payoff during period t and t+1, and is

βt

[
πh (xt, ht) + β

(
πx (xt+1, ht+1)

dxt+1

dht
+ πh (xt+1, ht+1)

dht+1

dht

)]
ϵ

= βt

[
πh (xt, ht)− β

(
πx (xt+1, ht+1) + πh (xt+1, ht+1)

)dF (yt)
dy

]
ϵ .

Setting this expression equal to zero yields the Euler equation

πh (xt, ht) = β [πx (xt+1, ht+1) + πh (xt+1, ht+1)]
dF (yt)

dy
. (1.3)

The left side is the marginal profit of an additional unit of harvest in period
t. If the perturbation is positive, this term equals the benefit of the pertur-
bation. The right side is the present value at time t of the sum of two terms:
the marginal value of an additional unit of stock, πx (xt+1, ht+1), times the

change in stock due to the extra harvest at t, −dF (yt)
dy

, plus the marginal value

of an additional unit of harvest at t + 1, πh (xt+1, ht+1), times the changed

harvest at t + 1, −dF (yt)
dyt

. If the perturbation dht is positive then the com-
pensating change dht+1 must be negative, so the term on the right hand side
is the cost of the perturbation.

1.2 The Dynamic Programming Equation

Here we introduce the dynamic programming equation, retaining the simple
version of the fishing problem. Again we take the initial time to be t = 0, and
the initial condition is x0 = x. We denote the solution to the optimization
problem as V (x):

V (x) = max{hτ}∞τ=0

∑∞
τ=0 β

τπ (xτ , hτ )

subject to xτ+1 = F (xτ − hτ ), τ ≥ 0 and x0 = x, given.

The function V depends only on the initial condition of the state variable,
x, not on calendar time, because this problem is autonomous. For a non-
autonomous problem, the value function includes the argument t.
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The horizon of a discrete time control problem is the number of periods before
the end of the program, which equals the number of remaining periods in
which the planner makes a decision. We obtain the dynamic programming
equation for the infinite horizon problem above by taking the limit of a
sequence of finite horizon problems, as the horizon goes to infinity. A finite
horizon problem is not autonomous. For example suppose that the problem
begins at the calendar time t = 2015, the length of each period is one year,
and the problem lasts for 50 years. As calendar time advances, the number
of remaining periods diminishes. Therefore, the problem facing a planner
in year 2015, at the beginning of the problem, is different from the problem
facing the planner at calendar time 2030, even if the value of the state variable
happens to be the same at the two points in time. In 2015 the planner has 50
years left, and in 2030 she has 35 years left. The notation must therefore keep
track of this difference. There are two ways that we might adapt the notation
to achieve this accounting. Probably the most natural-seeming method is to
introduce an argument equal to calendar time, and also keep track of the
time when the problem begins – 2015 in the example above. The alternative
is to keep track of time-to-go.

Apart from the constant discounting, the problem depends on time only
because of the finite horizon. This fact makes it convenient to use the second
alternative, where we keep track of time-to-go rather than calendar time.
The use of time-to-go emphasizes the manner in which we actually solve the
finite horizon problem, beginning with the final period when the time-to-
go is 1 and then working backwards until the first period in calendar time,
when (in the example above) the time-to-go is 50 and the calendar time is
2015. This alternative also simplifies the procedure for finding the dynamic
programming equation for the infinite horizon, autonomous problem.

At an arbitrary calendar time, we denote the length of the remaining hori-
zon as T , which we take to be finite. We use a superscript T to indi-
cate time-to-go. Thus, V T (x) is the value of a program with initial con-
dition x when there are T periods to go before the end of the program,
and V (x) = limT→∞ V T (x). We assume that the limit exists; the appendix
provides the conditions under which this assumption is valid.

The fact that the horizon is finite means that we can consider the decision in
the last period, where T = 1. In our fishing problem, given arbitrary stock
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x, the problem is
V 1 (x) = max

h≤x
π (x, h) . (1.4)

The superscript on the value function denotes the fact that a single period
remains. The lack of time subscripts on the arguments of the functions
is intentional; it emphasizes that actual calendar time plays no role in the
problem. The important data are the value of the current stock and the
fact that the current decision is the last one. The notation conveys this
information.

However, the absence of time subscripts means that we need some other
means of distinguishing between the values of variables in contiguous periods.
In the following, we denote the values of the state and control variables at
an arbitrary time t as x and h and the values of these variables in the next
period as x′ and h′. In some contexts we view t as the current time, so that
x is the value of the initial condition. However, the notation is general: t is
an arbitrary time. With this notation, when there are two periods remaining
and the current stock is x, the optimization problem is

V 2 (x) = max
h≤x and h′≤x′

π (x, h) + βπ (x′, h′) subject to x′ = F (x− h)

= max
h≤x

[
max
h′≤x′

{π (x, h) + βπ (x′, h′)}
]

subject to x′ = F (x− h)

= max
h≤x

{
π (x, h) + max

h′≤x′
βπ (x′, h′)

}
subject to x′ = F (x− h)

= max
h≤x

{
π (x, h) + βV 1 (x′)

}
subject to x′ = F (x− h) .

The first equality defines the value function when there are two periods re-
maining: the maximized value of the program. The second equality breaks
the joint maximization over h and h′ into two separate stages of maximiza-
tion. The third equality moves the max h′≤x′ operator past the function
π (x, h), taking advantage of the fact that this function does not depend on
h′. The fourth equality uses the definition in equation 1.4, replacing the
maximization problem inside the brackets with its optimal value, the func-
tion V 1 (x′). We need the supercripts on the functions V to keep track of
the number of periods remaining.

If there are T ≥ 2 periods remaining in the fishing problem, we can proceed
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inductively to write the dynamic programming problem

V T (x) = max
h≤x

{
π (x, h) + βV T−1 (x′)

}
subject to x′ = F (x− h) . (1.5)

The left side is the value of the program when there are T periods remaining
and the stock is x. The equation states that this value equals the maximized
value of the the sum of the current payoff and the present value of future
payoffs, V T−1 (x′); the last term is often referred to as the continuation payoff.

The procedure above enablues us to replace the dynamic problem that re-
quires T harvest decisions, with a sequence of T “static” problems, each
requiring a single decision. If T is large, the second alternative is more effi-
cient. Of course, there is a cost to considering many small problems rather
than a single large problem. The cost is that for each value of T ≥ 2, each of
the small problems involves the function V T−1 (x). In order to solve any of
these problems, we need to solve the prior problem – the one associated with
the next time period – in order to construct V T−1 (x). We work backwards
from the final period in order to construct the solution. Note that it is not
enough to know a particular value of V T−1 (x); we need the actual function,
because in considering the effect of a change in the current control we need
to know how that change alters subsequent payoffs.

The discussion here provides the sketch of an algorithm for numerically solv-
ing the original dynamic problem, an issue that we return to in Chapter xx.
Our objective here is primarily to motivate the dynamic programming equa-
tion for the autonomous problem, where T = ∞. If limT→∞ V T (x) = V (x)
exists, then we can formally take limits of both sides of equation 1.5 to write
the DPE for the original autonomous problem:

V (x) = max
h≤x

{π (x, h) + βV (x′)} subject to x′ = F (x− h) . (1.6)

An alternative derivation of the DPE does not involve the detour to the
finite horizon problem. We simply define V (x) as the value of the program,
and recognize that the value of the program today, given state x, equals the
maximized value of the current payoff, π (x, h), plus the discounted value
of the payoff in the future, given that we behave optimally in the future,
βV (x′).

Given the state variable and the control variable, and given the single period
payoff and the equation of motion (here π and x′ = F (x− h), respectively),
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and given the discount factor β, the student should be able to write down
the autonomous control problem and the corresponding DPE (see exercise in
section 1.7).

1.3 Using the DPE to Obtain the Euler Equation

We continue to use the notaion where, for an arbitrary calendar time t (not
necessarily the initial time) a prime over a variable indicates the value of
that variable in the next period, t + 1; the absence of a time subscript on a
state or control variable indicates that we evaluate that variable in period t.
Continuing with the simple fishery model, here we use the DPE to provide
an alternative derivation of the Euler equation. This systematic approach is
useful for problems that are too complicated for the heuristic approach taken
in section 1.1 to be practical.

The first order condition for the optimization problem on the right side of
equation 1.6, assuming an interior optimum, is

πh (x, h) = −βVx (x′)
dF (x− h)

dh
.

Using the fact that
dF (x− h)

dh
= −dF (x− h)

dx
(1.7)

we rewrite the first order condition as

πh (x, h) = βVx (x
′)
dF (x− h)

dx
. (1.8)

The derivative Vx (x
′) is often referred to as the shadow value of the state

variable; in other contexts it is referred to as the costate variable. Recall
that in constrained optimization problems the Lagrange multiplier associated
with a constraint is also referred to as the shadow value of that constraint.
The derivative Vx (x

′) equals the increase in the value of the program due to
an increase in the level of the state variable.

Applying the envelope theorem to equation 1.6 implies

Vx (x) = πx (x, h
∗) + βVx (x

′)
dF (x− h∗)

dx
. (1.9)



1.3 Using the DPE to Obtain the Euler Equation 18

Equation 1.9 relates the shadow value at different periods, and is sometime
referred to as the equation of motion for the shadow value, or the costate
equation (because it determines the change in the costate variable). The
current shadow value equals the marginal change in the current payoff fol-
lowing a marginal change in the current state variable, plus the marginal
change in the state variable in the next period, times the shadow value in
the next period, discounted back to the current period. The ∗’s in equation
1.9 emphasize that the functions are evaluated at the optimal harvest.

The first order condition and the costate equation hold at every period; in
particular they hold at periods t and t+ 1, i.e. in contiguous periods. At an
arbitrary time t we have xt = x, and period t+1 is the next period. We can
advance both the first order condition and the costate equation 1 period, i.e.
evaluate them at time t+ 1, and write the equations as

πh (t+ 1) = βVx (t+ 2)
dF (t+ 1)

dx
(1.10)

Vx (t+ 1) = πx (t+ 1) + βVx (t+ 2)
dF (t+ 1)

dx
(1.11)

Here we abuse notation by writing, for example, πx (t+ 1) instead of
πx
(
xt+1, h

∗
t+1

)
; that is we replace the arguments of the various functions

by the time index at which the arguments are evaluated. This notation
merely simplifies the appearance of the equations. In the interest of clarity
we rewrite equation 1.8 using this notation:

πh (t) = βVx (t+ 1)
dF (t)

dx
,

which we rewrite as
πh (t)

β dF (t)
dx

= Vx (t+ 1) . (1.12)

Substituting equations 1.10 and 1.12 into the costate equation 1.11 we obtain

πh (t)

β dF (t)
dx

= πx (t+ 1) + πh (t+ 1) ⇐⇒

πh (t) = β [πx (t+ 1) + πh (t+ 1)]
dF (t)

dx
.

The last equation is equivalent to the Euler equation we previously obtained,
because dF (t)

dx
= dF (t)

dy
.
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1.4 Approximating the Control Rule

Up to this point we have emphasized the open loop representation of the so-
lution to the control problem. Here we consider the feedback representation
– the control rule that gives the level of the control variable as a function of
the state variable. We remain with the autonomous control problem.

A steady state is a level of the state variable at which the optimal decision
causes the state variable to remain constant. The steady state may not be
unique. It is straightforward, at least in principle, to determine the value or
the values of the steady state. We can also conduct comparative statics of
the steady state, i.e. obtain qualitative information about how the steady
state value changes with exogenous parameter changes. However, except for
very simple special cases, we cannot obtain analytic solutions to the optimal
control rule, and we cannot learn how parameter changes alter the optimal
decision outside the steady state. We can, however, use the Euler equation to
approximate the optimal control rule in the neighborhood of the steady state,
and we can do comparative statics on this approximation. That is, we can
determine how an exogenous change in a parameter alters the approximately
optimal decision at a level of the state variable near the steady state.

In almost any situation, it would be more interesting to obtain an approxi-
mation of the optimal control rule in the neighborhood of the current level
of the state variable, the initial condition. If the initial condition is far from
the steady state, the approximation of the control rule in the neighborhood
of the steady state may not provide much information about the optimal
decision in the current period. Thus, the practical value of the analysis in
this section depends on the specifics of the problem. In particular, it depends
on the distance between the initial condition and the steady state, and on
how closely the linear approximation tracks the optimal control rule. We
can learn the first piece of information by calculating the steady state and
comparing it with the initial condition, but we cannot learn the second piece
without solving the dynamic problem – which would of course render the
approximation useless.

We emphasize the assumption that the steady state is locally stable (also
referred to as asymptotically stable). Local (or asymptotic) stability in this
context means that the optimally controlled state variable approaches the
steady state if it begins close to the steady state. This assumption means
that if the decision maker uses the optimal decision rule, a function g(x),
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and if the state begins in the neighborhood of the steady state, then the
trajectory asymptotically (as t → ∞) approaches the steady state. We can
insure that this assumption is satisfied by putting enough structure on the
primitives of the model, the single period payoff function and the equation
of motion and the discount factor. Alternatively, we may want to assume
local stability: if the control rule is not locally stable, then there is not much
interest in that particular steady state, because the controlled state would
not remain in its neighborhood unless it happens to begin at exactly the
steady state. Therefore, there would be little point in learning about the
control rule in that neighborhood.

We depart from the fishing problem and consider instead a capital accumu-
lation problem with costly (convex) adjustment. The state variable is the
stock of capital, K, and the control variable is the level of investment, I.
The equation of motion is

Kt+1 = δKt + It, (1.13)

with 0 < δ ≤ 1 and the single period payoff is

π (Kt)− c (It)

where the restricted profit function, π, is concave and the investment cost, c,
is strictly convex. This convexity reflects the idea that doubling investment
in a single period more than doubles costs, i.e. it is more expensive to adjust
rapidly than slowly. The discount factor is 0 < β < 1. Now we have the
primitives of the problem.

This problem has two features that distinguish it from the fishery problem.
First, the equation of motion is linear in both the state and the control. This
fact simplifies the local approximation, and is our main reason for departing
from the fishery problem; a linear equation of motion does not make much
sense for a renewable resource problem. Second, in our formulation of the
fishery problem, the stock in the next period depends only on the difference
between the state variable and the control. We used that fact in writing
equation 1.7, and this equation played a role in writing the Euler equation. In
the capital accumulation problem, the state variable depends on the current
state and control variables, not just their difference, unles δ = 0.

With these primitives, the Euler equation (see Exercise 3) is

c′ (It) = β (π′ (Kt+1) + δc′ (It+1)) . (1.14)
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By definition, in a steady state, capital and investment are unchanging.
Thus, in a steady state, equations 1.13 and 1.14 must hold as algebraic
(instead of difference) equations. The steady state conditions are therefore

K = δK + I, (1.15)

c′ (I) = β (π′ (K) + δc′ (I)) . (1.16)

Solving the first equation (I = (1− δ)K) to eliminate I from the second
equation gives the steady state condition

c′ ((1− δ)K) = β (π′ (K) + δc′ ((1− δ)K)) , or (1.17)

q (K) ≡ c′ ((1− δ)K) (1− βδ)− βπ′ (K) = 0. (1.18)

Note that

q′ (K) = (1− βδ) (1− δ) c′′ ((1− δ)K)− βπ′′ (K) > 0.

This monotonicity means that there is at most one root to equation 1.18, i.e.
at most one steady state. Therefore, if a steady state exists, it is unique.
Not all problems of this sort have a unique steady state.

Some comparative statics questions are straightforward. For example, to
determine how δ affects the steady state level of K, totally differentiate the
steady state condition 1.17 to obtain

((1− βδ) (1− δ) c′′ (I∞)− βπ′′ (K∞)) dK∞ = ((1− βδ)K∞c
′′ (I∞) + βc′ (I∞)) dδ.

(1.19)
Here we use the subscript ∞ to empahsize that we evaluate variables in
the steady state. When there is no ambiguity, we often drop this subscript.
From equation 1.19 conclude that

dK∞

dδ
> 0;

i.e., if capital lasts longer (larger δ) the steady state stock of capital is higher.

A more interesting question is to determine the characteristics of the decision
rule in the neighborhood of the steady state. The feedback form of the
solution to the Euler equation is a control rule of the form

It = g (Kt) ,
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where g ( ) is the control rule. For general functional forms we cannot
find the function g in closed form, but we can always approximate it in the
neighborhood of the steady state. Write the first order Taylor approximation
of the control rule, in the neighborhood of the steady state, as

I (K) ≈ g (K∞) + g′ (K∞) (K −K∞) .

The trick is to find g′ (K∞), since everything else on the right side of the
equation is known. For example, g (K∞) = I∞, and we know this value from
solving the pair of algebraic equations 1.15 and 1.16. Denote mt = g′ (Kt);
the object that we want to evaluate is m∞ = m (K∞), the steady state value
of mt.

In order to find the value of g′ (K∞), replace It with g (Kt) in the Euler
equation 1.14 and differentiate with respect to Kt. The result is a difference
equation involving mt and mt+1. Next, evaluate this difference equation in
the steady state, where mt = mt+1. Denote this common value as m rather
than m∞ in order not to encumber the notation. The result is an algebraic
(rather than a difference) equation in m. This equation is

z (m) ≡
(
−
(
1− βδ2c′′ + βπ′′)m+ βδc′′m2 + βδπ′′) = 0. (1.20)

This equation does not show the arguments of the functions; the notation c′′,
for example, means c′′ (I∞).

Equation 1.20 is a quadratic in m. The coefficient of m2 is positive, the
coefficient of m is negative and the intercept (βδπ′′) is negative. From a
sketch, one sees that one root of the function z(m) is negative and the other
positive. We are interested in a steady state that is locally stable; this means
that if the state is in the neighborhood of the steady state, it approaches the
steady state. The controlled equation of motion is

Kt+1 = δKt + g (Kt) ≡ L(Kt).

In general, a steady state K∞, associated with a difference equation of the
form

Kt+1 = L(Kt)

is stable if and only if
| L′ (K∞) |< 1. (1.21)
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Figure 1 provides a geometric illustration of this fact. The figure shows
the 45 degree line, at which Kt+1 = Kt, as must be the case at a steady
state. The figure also shows the graphs of two possible functions L(K).
For the lower of these, L′(K) > 1 at a steady state; for the higher graph,
0 < L′(K) < 1 at a steady state. We can use this construction to map
out the trajectory given a particular initial condition, as the arrows show.
This mapping proceeds as follows. A steady state is the Kt coordinate of
the intersection between the function L(Kt) and the the 45 degree line. We
pick an arbitrary value of Kt near but not exactly at a steady state. At this
initial value of Kt, the value of the state variable in the next period is L(K).
We reflect this point off the 45 degree line; that is we move horizontally
toward the 45 degree line until hitting it and then move vertically towards
the horizontal axis until hitting the axis, to obtain the next value of the state
variable. Proceeding in this way, we obtain a sequence of points on the Kt

axis. These points are succesive values of the state variable.

The sequence of points corresponding to the lower graph diverges from the
steady state, so that steady state is unstable. The sequence of points cor-
responding to the higher graph converge to the steady state, so that steady
state is stable. In the lower graph the inequality 1.21 is not satisfied, and in
the upper graph the inequality is satisfied. Both of these graphs are increas-
ing functions; an exercise considers the case where the graphs are decreasing.

For our problem
L′ (K∞) = δ +m,

so the stability condition 1.21 can be written as

−1 < δ +m < 1

or − 1− δ < m < 1− δ

An exercise asks the student to confirm that the negative root of z(m) defined
in equation 1.20 satisfies the stability condition, and the positive root violates
it.

Therefore, we conclude that the negative root is the correct value of m. It is
(fairly) straightforward to do comparative statics of the negative root. Thus,
we can learn something about the solution to the optimal control problem in
the neighborhood of a steady state by studying the algebraic solution to the
Euler equation, and using the stability of the steady state.
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1.5 Generalizations

In both of the examples in this Chapter, the state variable and the control
variable are scalars. In general, the state and the control “variables” can be
vectors. The state variable contains all of the information needed to make an
optimal decision. The control variable contains the variables that the deci-
sion maker chooses. Models used to obtain qualitative insights often involve
scalar state and control variables. In some cases, particularly where we use
numerical solutions, the state variable and control variable may be vectors.
In addition to this practical reason for considering the multi-dimensional
case, it is also worth thinking about it in order to help fix ideas about the
meaning of the state and the control variables.

To this end, consider the fishing problem where in each period a decision
maker chooses the amount of money to invest in new boats and the number
of fish to harvest. Suppose that the price of fish changes exogenously and
deterministically. The payoff in a period equals revenue (price times harvest)
minus the cost of harvest minus the investment. The cost of harvest depends
on the current stock of boats (i.e. “fishing capital”) and might also depend
on the biomass of fish, because it is cheaper to catch fish when they are
abundant. The growth of the fish stock also depends on the biomass of fish.
In this problem there are three state variables, the price of fish, the biomass,
and the fishing capital. At the beginning of a period, the level of each of
these variables is given, i.e. is pre-determined. The price of fish changes
exogenously, and the level of biomass and the stock of fishing capital change
endogenously. Changes in the latter two stocks depend on current decisions,
harvest and investment. Thus, state variables can be either exogenous or
endogenous, but at the beginning of a period their levels are predetermined.
The control variables in this setting are harvest and investment.

By adding more state and/or control variables, we obtain a more realistic
problem. For example, rather than describing the stock of fish using a single
variable, it might be important to distinguish age classes, e.g. young and
mature fish. In that case, we need two state variables to describe these two
stocks, rather than a single variable. If there are n age classes, we need n
state variables. In addition, it might be important to keep track of the stock
of different types of fish. For example, if the fish being harvested is preyed
upon by a second type of fish, the stock level of this second species likely
affects the change in the stock of the harvested species. In that case, the
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stock of the predator should also be part of the state variable. There may
also be other exogenous state variables. For example, the price of fish may
depend on income or the prices of other commodities that evolve exogenously,
but which affect the payoff to fishing.

As this example suggests, it is easy to make a plausible case for including
many variables in the state and the control vectors. However, parsimony
is the hallmark of a good model. The optimization problem becomes dif-
ficult to solve, even numerically, as the dimension of the state variable in-
creases. Qualitative insights, such as those based on approximations around
the steady state, are also harder to obtain in a multi-dimensional setting.
We often lose clarity in creating a complex model. Our goal is to create
a model that captures enough of the real world to be relevant, and that is
simple enough to be tractable. In moving from a description of an economic
situation, to a formal dynamic model, the researcher should begin by asking:
What is the state variable and what is the control variable for this model?

1.6 An Analogy

Students who have not previously studied explicitly dynamic models, are nev-
eretheless likely to have encountered methods that are analogous to dynamic
programming. This section develops that analogy by means of an example.
The point of the discussion is help the reader see that dynamic programming
is a natural way to approach problems.

Consider an agent who has one unit of time that he divides between leisure,
L, and working for wage w. The labor supply decision provides income
y = w (1− L) which he spends on a consumption vector c, obtaining utility
u (c, L). The vector of prices is p. We can think of the labor supply and the
consumption decisions occurring at the same time, in which case the problem
is

max
L,c

u (c, L) subject to pc ≤ y = w (1− L) .

Equivalently, we can break the problem up into two stages, first choosing
labor supply and then choosing consumption. The labor supply decision
determines the agent’s income, and that variable feeds into the problem of
choosing the consumption bundle. In order to determine how much labor
to supply, the agent needs to know the benefit of income. In this two-
stage problem, we therefore consider the consumption stage first, even though
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consumption occurs after supplying labor; that is, we work backwards, just
as in the fishing model. The indirect utility function, with arguments income,
prices, and leisure, y, p, and L, is

v (y, p, L) = max
c
u (c, L) subject to pc ≤ y.

The indirect utility function equals the maximized value of utility for a given
level of income and leisure. This function is familiar from intermediate the-
ory, although often the argument leisure does not appear. The utility function
is primitive (data to the problem), and the indirect utility function is endoge-
nous, i.e. it is induced by the utility function and the operation of maximiza-
tion. The indirect utility function is analogous to the function V 1(x) that
we used in the finite horizon fishing model. The model here corresponds to
the case where T = 2. The labor supply decision is the solution to

max
L

v (w (1− L) , p, L) .

In this simple problem, there is no obvious advantage to considering the
two decisions jointly or to considering them sequentially. (In a slightly
more complicated setting, e.g. where prices are a random variable at the
time of choosing labor, and known at the time of choosing consumption,
there would be a material reason for breaking the problem into two parts.)
However, the point of this discussion is to emphasize that the problem is the
same, regardless of whether we consider it as one problem over two types
of decisions, L and c, or two problems each over one type of decision. In
a dynamic setting, this idea of breaking a single problem into smaller parts
has much greater power. The relation between the value function V and
the single period profit function π and growth function F in the dynamic
problem is analogous to the relation between the indirect and direct utility
functions in the static problem.

1.7 Exercises

Exercise 1 Profits from farming depend on soil quality. The evolution of
soil quality depends on the application of fertilizer, which is costly. The
farmer wants to maximize the present discounted value of profits net of the
cost of fertilizer. Define a state and a control variable, a payoff function
and an equation of motion. Write down the optimization problem and then
write the corresponding DPE.
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Exercise 2 Consider replacing the equation of motion in the fishing problem,
x′ = F (x− h), with x′ = F (x)− h. (a) What is the physical interpretation
of this change? (b) Derive the Euler equation for the new model using the
heuristic approach. Interpret this Euler equation. (c) Write down the DPE
for this problem and derive the Euler equation using the DPE.

Exercise 3 (a) Write the maximization problem for the capital accumu-
lation problem, using the definitions of the primitives in Section 1.4. (b)
Derive the Euler equation for this problem in both the heuristic method and
the DPE. (c) Interpret the Euler equation.

Exercise 4 Confirm that the negative root of equation 1.20 satisfies the sta-
bility condition, and the positive root violates it. In order to do this, show
that z (−1− δ) > 0 > z (1− δ). Use a graph to see why these inequalities
establish the claim.

Exercise 5 Using the tools developed in Section 1.4 find the comparative
statics of the local approximation of the control rule, with respect to δ.

Exercise 6 Both of the graphs in Figure 1 are increasing functions. Use the
procedure described in the text to confirm that inequality 1.21 is also necessary
and sufficient for stability when the graph of the function L(K) is negatively
sloped.
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2 An Application to Climate Policy

This section explains two methods of obtaining the necessary conditions for
an optimal control problem involving climate policy. The first method, fol-
lowing Golosov et al. (2011), treats the problem as a stochastic programming
problem solved using the method of Lagrange. In addition to illustrating
how to use this method, the discussion also shows how judicious choice of
functional forms can hugely simplify a problem. The second method uses
dynamic programming. For the particular functional forms, dynamic pro-
gramming (DP) offers no advantages over the method of Lagrange. By
showing the two approaches side-by-side, we: (i) illustrate that they are
merely two routes to the same end; (ii) introduce the reader to a solution
method that is often used, but which we do not consider hereafter; and (iii)
develop intuition about the meaning of the partial derivatives of a value func-
tion. For functional forms more general than those considered here, the DP
approach offers computational advantages, as will be apparent later in this
series of lectures.

The economy has a final goods sector (1) and an energy sector (2). Agents
can consume the final good or save it as capital. Production of this good
requires capital, K1, labor, N1, and energy, E1. The stock of carbon, S,
creates damages, reducing output of the final good. Production of the final
good equals Yt = F1,t (K1,t, N1,t, E1,t, St).

If the economy begins a period with a resource stock Rt and produces
Et units of energy (fossil fuels) in period t, the change in the fossil fuel
stock is Rt − Rt+1 = Et. Energy production create carbon emissions,
which alter the carbon stock, S. Sector 2 produces energy, using capi-
tal, K2, labor, N2, and energy, E2. The production function for energy is
Et = F2,t (K2,t, N2,t, E2,t, Rt, Rt+1); the arguments Rt and Rt+1 allow produc-
tion costs to be stock-dependent. For example, if the resource stock is oil,
production costs increase as stocks fall.

The objective is to maximize the expectation of the present discounted stream
of utility,

Et

∞∑
τ=0

βτU (Ct+τ ) ,

with 0 < β < 1 the utility discount factor. The constraints are
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Ct +Kt+1 = F1,t (K1,t, N1,t, E1,t, St) + (1− δ)Kt (2.1)

Et = F2,t (K2,t, N2,t, E2,t, Rt, Rt+1) (2.2)

St+τ =
T+t+τ∑
s=0

(1− ds)Et+τ−s (2.3)

Rt+1 = Rt − Et (2.4)

K1,t +K2,t = Kt N1,t +N2,t = Nt E1,t + E2,t = Et. (2.5)

Equation 2.3 states that the carbon stock S, at time t+τ , is a linear function
of emissions from time −T to the current time. This model provides one of
many ways to represent the carbon cycle.

The subscripts t on the functions F1,t and F2,t allow for the possibility that
there is exogenous change, e.g. due to technological progress. Therefore,
this problem is not stationary. These functions may also contain stochastic
variables, e.g. random variables that affect technical progress or climate-
related damages. We suppress those arguments. We do not need specify
the precise stochastic structure, except to assume that the realization of any
random variable entering the functions F1,t and F2,t are known at time t. This
assumption enables us to move certain functions outside of the expectations
operator, Et.

2.1 The method of Lagrange

We use the first constraint in equation 2.5 to replace the choice variable K1,t,
appearing in the function F1,t by Kt − K2,t; we use the third constraint in
equation 2.5 to eliminate the choice variable E2,t, appearing in the function
F2,t. (This “asymmetric” substitution, eliminating K1,t and E2,t, rather
than, for example K1,t and E1,t is arbitrary. It leads quickly to the condi-
tions shown in Golosov et al (2011).) The third constraint in equation 2.5 is
an implicit function of Et+τ . We cannot eliminate this constraint by sub-
stitution. Constraints appearing as implicit functions do not present any
problem, but they do affect the appearance of the dynamic programming
equation (Section 2.2). Here, we merely note that some constraints can and
others cannot be eliminated by substitution.
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The variables βτλ1,t+τ , β
τλ2,t+τ , β

τζt+τ , and β
τµt+τ are the present value La-

grange multipliers for the constraints in equations 2.1 – 2.4. The Lagrangian
for the problem at time t is

L= maxEt

∑∞
τ=0 β

τ{U (Ct+τ )

+λ1,t+τ (F1,t+τ (Kt+τ −K2,t+τ , N1,t+τ , E1,t+τ , St+τ ) + (1− δ)Kt+τ − Ct+τ −Kt+τ+1)

+λ2,t+τ (F2,t+τ (K2,t+τ , N2,t+τ , Et+τ − E1,t+τ )− Et+τ )

+ζt+τ

(∑T+t+τ
s=0 (1− ds)Et+τ−s − St+τ

)
+µt+τ (Rt+τ − Et+τ −Rt+τ+1)}.

(2.6)
Each of the last four lines of the Lagrangian, L, corresponds to one of the four
constraints in equations 2.1 – 2.4. The expectation operator and βτ apply
to each of these constraints. The interpretation of the Lagrange multipliers
is worth noting. λ1,t =

∂L
∂F1,t

is the shadow value at t of an additional unit

of the final good. λ2,t = ∂L
∂F2,t

is the shadow value at t of an additional

unit of energy supply. For example, the planner would be willing to pay
λ2,t for one more unit of energy, if that additional unit did not require the
reallocation of factors of production or increased emissions or the reduction
in the stock of fossil fuels. Similarly, ζt is the shadow value at t of the
carbon cycle constraint. We show below that it equals the utility loss due
to an additional unit of the carbon stock St, holding fixed all future stocks;
ζt is not the shadow value of carbon, because a change in that stock would
in fact change subsequent stocks. µt is the shadow value of the resource,
the amount that the planner would pay for an additional unit of the stock of
fossil fuels.

There are two plausible interpretations of this optimization problem. If we
think of the planner as choosing the entire sequence of endogenous variables,
from the current period to infinity, we obtain the open loop equilibrium.
Under uncertainty, this solution is not optimal: the planner can do better
by conditioning future decisions on information that becomes available in
the future, rather than, for example, selecting the value of Ct+5 at time t.
A planner who implements only the first period decision of the open loop
solution, and then resolves the problem in the next period, to obtain the
second period decision, uses “open loop with revision”. In this scenario, the
planner uses new information as it becomes available, and obtains a higher
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payoff than if she were to implement the open loop solution obtained in the
first period.

However, the open loop with revision outcome is not optimal, because in
selecting the first period decision (the one that she actually implements)
she behaves as if she will also implement subsequent decisions (the ones
that she will actually revise). Thus, although better than the open loop
solution, the open loop with revision solution still fails to incorporate all
useful information. In particular, in this scenario the planner ignores the
fact that she will, in fact, condition future decisions on information that
becomes available in the future.

The second interpretation of the optimization problem, and the one that we
adopt, is that the planner chooses state contingent actions, i.e. actions based
on all information available at the time of implementation. More careful, but
substantially more cumbersome notation, would explicitly show that future
decisions are state contingent; we use the simpler, but less precise notation.
The necessary conditions to this optimization problem do not lead directly
to those state contingent policies, but only provide information about their
qualities. However, for some functional forms, these necessary conditions
make it possible to obtain the state contingent policies.

To simplify the notation, we sometimes suppress the arguments of a function,
writing, for example, ∂F1,t+1(t+1)

∂K
, or ∂F1,t+1

∂K
or (where the additional notation

might promote clarity), ∂F1,t+1

∂K1,t
as shorthand for

∂F1,t+1 (Kt+1 −K2,t+1, N1,t+1, E1,t+1, St+1)

∂Kt+1

.

The reader knows that F1,t+1 is a function of K1,t+1, which we set equal to
Kt+1 −K2,t+1 in order to eliminate a constraint. A change in Kt therefore
creates a change in K1,t.

The first order conditions with respect to Ct and Kt+1 are1

Et [U
′ (Ct)− λ1,t] = 0 (2.7)

Et

[
−λ1,t + βλ1,t+1

(
∂F1,t+1 (t+ 1)

∂K
+ 1− δ

)]
= 0 =⇒

1In some places, e.g. equation 2.7, we leave non-random variables under the expecta-
tions operator, merely to give the equations a more unified appearance.
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λ1,t = Et

[
βλ1,t+1

(
∂F1,t+1 (t+ 1)

∂K
+ 1− δ

)]
=⇒

U ′ (Ct) = βEt

[
U ′ (Ct+1)

(
∂F1,t+1 (t+ 1)

∂K
+ 1− δ

)]
. (2.8)

We can take U ′ (Ct) out of the expectations operator because Ct is a choice
variable, not a random variable, at time t. However, Ct+1 will be conditioned
on information not available at time t, and therefore it is a random variable
at time t. Equation 2.8 is the Euler equation for consumption, and has
the standard interpretation: perturbing an optimal program by saving one
more unit today and changing next period consumption in order to leave
the subsequent level of capital unchanged, has a zero first order effect on
welfare; the marginal cost of the perturbation equals the marginal benefit.
Saving rather than consuming the marginal unit of output today reduces
current consumption by one unit, so the cost of the perturbation is U ′ (Ct).
The present value of an additional unit of consumption next period equals
βU ′ (Ct+1), and the additional unit of capital makes it possible to consume
∂F1,t+1(t+1)

∂K
+1− δ additional units next period, while leaving the period t+2

capital stock at its original (before the perturbation) level. The right side
of equation 2.8 is the expected present value benefit of the perturbation.

The first order conditions for E1,t, Et, and St are, respectively,

Et

[
λ1,t

∂F1,t (t)

∂E
− λ2,t

∂F2,t (t)

∂E

]
= 0 (2.9)

Et

[
−λ2,t

(
1− ∂F2,t (t)

∂E

)
+

∞∑
τ=0

βτζt+τ (1− dτ )− µt

]
= 0 (2.10)

Et

[
λ1,t

∂F1,t

∂S
− ζt

]
= 0 (2.11)

Equation 2.11 shows the relation between two shadow values. The shadow
value of the carbon constraint, ζt, equals the shadow value of the final good,
λ1,t, times the amount by which a change in S alters the supply of the final
good. Equation 2.10 implies

Et

[
λ2,t

∂F2,t (t)

∂E

]
= Et

[
λ2,t −

∞∑
τ=0

βτζt+τ (1− dτ ) + µt

]
.
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Substituting this relation into equation 2.9 and then using equation 2.11 gives

λ1,t
∂F1,t(t)

∂E
= Et [λ2,t −

∑∞
τ=0 β

τζt+τ (1− dτ ) + µt]

= λ2,t + µt + Et

[
−
∑∞

τ=0 β
τλ1,t+τ

∂F1,t+τ

∂S
(1− dτ )

]
.

(2.12)

The constraint multipliers λ2,t and µt are known (not random) at time t, but
the stream of future damages depends on future realizations of random vari-
ables, and is therefore random at time t. Using equation 2.7, we express the
expectation of the present discounted value of the utility cost of an additional
unit of emissions, denoted λst , as

λst = −Et [
∑∞

τ=0 β
τζt+τ (1− dτ )] =

−Et

∑∞
τ=0 β

τλ1,t+τ
∂F1,t+τ

∂S
(1− dτ ) =

−Et

∑∞
τ=0 β

τU ′ (Ct+τ )
∂F1,t+τ

∂S
(1− dτ ) ;

(2.13)

λst equals the marginal social cost of carbon, in units of utility.2 The distinc-
tion between ζt and λ

s
t is worth emphasizing; in particular, ζt does not equal

the shadow value (the marginal social cost) of carbon . We noted above
that ζt is the shadow value of the carbon constraint, the change in utility
due to a marginal reduction in the current carbon stock, holding all else fixed
(equation 2.11). The function λst shows the utility cost of an additional unit
of carbon emissions in t. These emissions increase St+τ for all τ ≥ 0, thus
decreasing output and lowering current and future utility. Note also that λst
is the expectation of a random variable, and is therefore not random. Using
the definition of λst and equation 2.7, we rewrite equation 2.12 as

U ′ (Ct)
∂F1,t (t)

∂E
= λ2,t + λst + µt. (2.14)

Equation 2.14 is an optimality condition for resource extraction, showing
the balance between marginal benefits and costs of an additional unit of
emissions. An extra unit of extraction leads to higher production of the final

2Recall our convention for notation:
∂F1,t+τ

∂S is shorthand for

∂F1,t+τ (Kt+τ −K2,t+τ , N1,t+τ , E1,t+τ , St+τ )

∂St+τ
.
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good and higher current utility. The left side of equation 2.14 equals the
marginal benefit of emissions. The right side contains the three components
of marginal costs. Recall that λ2,t equals the shadow value of the energy
constraint, the amount the planner would pay for an additional unit of energy,
if that could be obtained without reallocating factors or changing emissions;
λst equals the social marginal cost of emissions; and µt equals the shadow
value of the stock of fossil fuels. Optimal extraction requires balancing all
of these considerations.

To convert the marginal social cost of carbon from units of utility to units of
current consumption, we divide by the current (time t) marginal utility:

Λs
t =

λst
U ′ (Ct)

= −Et

∞∑
τ=0

βτ U
′ (Ct+τ )

U ′ (Ct)

∂F1,t+τ

∂S
(1− dτ ) . (2.15)

If a regulator charges the social marginal cost of carbon, Λs
t , per unit of

emissions, a competitive economy results in the first best trajectory for con-
sumption, savings, and emissions. The regulator can levy the tax on either
fuel producers or users. This type of result is familiar: in the presence of an
externality or some other market failure, the socially optimal program can
be decentralized, i.e. supported as a competitive equilibrium, by appropriate
taxes. The proof of this assertion proceeds by showing that the equilibrium
conditions for a competitive economy with emissions tax Λs

t , are identical
to the optimality conditions of the social planner who chooses all variables
(consumption, savings, and emissions).

The only externality in this problem arises from stock-related environmental
damages. Therefore, an emissions tax that varies with the state of the
economy suffices to correct the externality. The correction of this externality
moves us to a first-best world, so it is not necessary to use other policies,
such as investment taxes or subsidies. If, for some reason, it is not feasible
to implement the first best emissions tax, a second best policy, such as an
investment tax or subsidy, could improve welfare.

2.1.1 Additional functional assumptions

We now make two assumptions about functions, leading to a simpler expres-
sion for Λs

t :

U (C) = lnC and Yt = F1,t (K1, N1, E1, S) = exp
(
−γt

(
S − S̄

))
F̃1,t (K1, N1, E1) ,
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where γt is a possibly random but exogenous parameter. With these func-
tional forms ∂F1,t+τ

∂S
= γtYt. Define the savings rate as st, so Ct = (1− st)Yt,

or Yt

Ct
= 1

1−st
. With these definitions and assumptions, using equation 2.15

Λs
t = CtEt

∞∑
τ=0

βτγt+τ
Yt+τ

Ct+τ

(1− dτ )

= (1− st)YtEt

∞∑
τ=0

βτγt+τ
1

1− st+τ

(1− dτ ) .

We can take Ct = (1− st)Yt outside the expectations operator because Ct is
chosen at time t, and thus is non-random. The future savings rates are the
only endogenous variables under the expectation operator.

Dividing Λs
t by current output, Yt gives the social marginal cost of carbon in

units of consumption (Λs
t), per unit of output:

Λ̂s
t =

Λs
t

Yt
= − (1− st)Et

∞∑
τ=0

βτγt+τ
1

1− st+τ

(1− dτ ) .

If it happens to be the case that the savings rate is constant, i.e. st = st+τ

for all τ , then the consumption equivalent of the social marginal cost of
carbon, per unit of output (hereafter, simply “social cost of carbon per unit
of output”), simplifies to

Λ̂s
t = −Et

∞∑
τ=0

βτγt+τ (1− dτ ) .

If the distribution of the damage parameter, γt+τ , is stationary, i.e. indepen-
dent of calendar time, then Etγt+τ = γ̄, a constant, and

Λ̂s
t = Λ̂s = γ̄

∞∑
τ=0

βτ (1− dτ ) , (2.16)

a constant.

Without additional assumptions, the savings rate st is not constant. Sup-
pose, in addition to the previous assumptions, that production of the final
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good is Cobb Douglas and in addition, extraction is costless up to the capac-
ity constraint.3 With these assumptions,

Yt = exp
(
−γt

(
St − S̄

))
AtK

α
t N

1−α−ν
t Eν

1,t.

Here, the final goods sector uses all labor and capital, so we do not use a 1
subscript on K,N . In addition, assume that capital fully depreciates in a
period: δ = 1. The Euler equation for consumption (2.8) simplifies (using
Kt+1

stYt
= 1) to

1

Ct

= βEt

[
α

Ct+1

(
exp

(
−γt+1

(
St+1 − S̄

)))
At+1K

α−1
t+1 N

1−α−ν
t+1 Eν

1,t+1

]
=⇒

1

(1− st)Yt
= βEt

[
α

(1− st+1)Yt+1

Kt+1

stYt

(
exp

(
−γt+1

(
St+1 − S̄

)))
At+1K

α−1
t+1 N

1−α−ν
t+1 Eν

1,t+1

]
=⇒

1

(1− st)Yt
= βEt

[
α

(1− st+1)Yt+1

Yt+1

stYt

]
=

αβ

stYt
Et

[
1

(1− st+1)

]
=⇒

st
(1− st)

= αβEt

(
1

(1− st+1)

)
.

The unique solution to the optimization problem solves the Euler equation
and a transversality condition (see Appendix). This unique solution is the
constant savings rule, st = s = βα. The savings rate is the product of the
discount factor and capital’s share in the value of output

Given the assumptions above, the optimal savings rate is constant, and equals
αβ. If the distribution of the damage parameter does not depend on calendar
time, then Etγt+τ = Eγ, a constant. With this assumption and using the
fact that constant savings rate is constant, the optimal emissions tax is a
constant fraction of output:

Λs
t = Λs = αβYt

(
∞∑
τ=0

βτ (1− dτ )

)
Eγ. (2.17)

3Golosov et al. also study a model with an infinite stock of the resource (e.g. coal)
where each unit extracted requires a constant amount of labor.
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2.2 The dynamic programming approach

This section reproduces the necessary conditions already obtained using the
method of Lagrange. The purpose of this exercise is to clarify the relation
between two methods of approaching a dynamic problem, and to develop
intuition concerning the meaning of the derivatives of the value function.

To use DP, we begin by identifying the state and control variables to the
problem. Denote the vector Et = (Et, Et−1....E0, E−1, ...E−T ), the t+ 1+ T
dimensional vector consisting of all emissions from time −T to the current
time, t. The passage of each period increases the dimension of the vector by
one. At time t, the state variable is Kt, Rt, E

t−1. Here we suppress Nt, labor
supply, because we saw that it does not play an interesting role in this model.
This variable may be important in calibrating the model, but that is not our
objective here. As noted above, the time indices on the production functions
capture exogenous changes in, for example, technology, and in addition the
production functions may depend on random variables, which we suppress.
The value function at time t is Jt (Kt, Rt, E

t−1). This problem is non-
stationary, both because of exogenous change in the production functions,
and the time-dependent changing dimension of the state variable. We assume
that the value function and its derivatives exist.

It is important to remember the meaning of the value function and the state
variables. The value function equals the maximized value of the program.
That value, and typically also the decisions at a point in time, depend on the
state variable (here, a vector). In “standard” models of the climate cycle,
of the type discussed in Section 2.3, the dimension of the state variable is
constant; in those models, a constant number of pieces of information about
the past contain all the information needed to make current decisions. The
situation is slightly different for the climate model in equation 2.3. Here, the
value of the program and the optimal current decisions depend on the entire
history of emissions, up to time −T . In that model, we need one more piece
of information in every period. Every element of Et−1 (in general) affects the
payoff and the optimal decision at time t; the decision at time t determines
the last element of Et, part of the state variable at t+ 1.

Example: The following example illustrates how the optimal policy de-
pends on the history of emissions as opposed to only the current stock of at-
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mospheric carbon. Suppose that d0 = d1 = 1−0.9, dτ = 1−0.8τ for τ ≥ 2, so
that emissions do not decay at a constant rate. Consider two different histo-
ries of emissions, that yield the same current stock of carbon. One trajectory
is Et−1 = (1, 1, 1, 1, ....1) and the second is Et−1 = (0.7, 1.1375, 1, 1....1). A
calculation confirms that the stock of carbon at t resulting from the first
emission path and emissions Et in period t

0.9 + 0.9Et +
t−1+T∑
s=2

(0.8)s + 0.9Et = 4. 1− 5.0× 0.8T+t + 0.9Et

is the same as the period t carbon stock resulting from the second emission
history

0.9+ 0.9Et (.7)+ 0.8 (1.1375)+
t−1+T∑
s=3

(0.8)s +Et = 4. 1− 5.0× 0.8T+t +0.9Et

Thus, regarding the time t stock, the planner is indifferent between the two
histories. However, the stock in the next period equals

St+1 = 0.9 (Et+1 + Et) +
t+T∑
s=3

(0.8)s

under the first history, and equals

St+1 = 0.9 (Et+1 + Et) + (0.8)3 (0.7) + (0.8)4 (1.1375) +
t+T∑
s=5

(0.8)s

under the second history. These two stocks differ by

(0.8)3 (0.7) + (0.8)4 (1.1375)−
[
(0.8)3 + (0.8)4

]
= −0.097 28,

so the planner at t + 1 prefers the second history, the one that leads to
a lower current stock, for any current emissions level. In addition, she
would (typically) choose different emissions levels under the two histories,
even if the planner at t had chosen the same emissions level. The planner
at t understands this fact, and therefore would (typically) choose different
emissions levels under the two histories.
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The dynamic programming equation is

Jt (Kt, Rt, E
t−1) = maxCt,K2,t,E1,t,Et{U(Ct) + βEtJt+1 (Kt+1, Rt+1, E

t)

+λ2,t (F2,t (K2,t, Et − E1,t)− Et)}
(2.18)

with

Kt+1 = F1,t (Kt −K2,t, N1,t, E1,t, St)− (1− δ)Kt − Ct

Rt+1 = Rt − Et.

Because the constraint associated with energy, in the second line of equation
2.18, is an implicit function, we cannot use it to eliminate a choice variable.
Instead, we attach the constraint, using a Lagrange multiplier, to the DPE
problem. Had we not explicitly attached this constraint, we would have had
to note it’s presence beneath the max operator. One way or the other, the
problem must include the constraint. We denote the Lagrange multiplier for
the energy sector as λ2,t, as in Section 2.1, in order to facilitate comparison
between the two solution methods.

We first obtain the Euler equation for consumption. The only difference
in the procedure here, relative to the fishery problem considered in Chapter
\label{dpe-discrete}, is that here the problem is stochastic. We have to
be careful with the expectations operator. The first order condition with
respect to Ct is

U ′(Ct) = βEt
∂Jt+1

∂K
. (2.19)

As above, we conserve notation by using the shorthand

∂Jt+1

∂K
=
∂Jt+1 (Kt+1, Rt+1, E

t)

∂Kt+1

.

When there is a risk of confusion, we write ∂Jt+1

∂Kt+1
instead of ∂Jt+1

∂K
. The

envelope theorem, applied to the DPE 2.18, implies

∂Jt
∂Kt

= βEt
∂Jt+1

∂Kt+1

(
∂F1,t

∂Kt

+ 1− δ

)
=

(
∂F1,t

∂Kt

+ 1− δ

)
βEt

∂Jt+1

∂Kt+1

.

Advancing this equation one period, and recognizing that the planner has new
information at time t + 1 and conditions her decision on that information,
gives

∂Jt+1

∂Kt+1

=

(
∂F1,t+1

∂Kt+1

+ 1− δ

)
βEt+1

∂Jt+2

∂Kt+2

=

(
∂F1,t+1

∂Kt+1

+ 1− δ

)
U ′ (Ct+1) ,



2.2 The dynamic programming approach 40

where the second equality uses the first order condition 2.19, evaluated at
time t+1. The right side of this equation contains the expectations operator
Et+1, because the decision at time t+1 is conditioned on information available
at that time. Substituting this result into equation 2.19, gives the Euler
equation for consumption

U ′(Ct) = βEtU
′ (Ct+1)

(
∂F1,t+1

∂Kt+1

+ 1− δ

)
,

shown previously as equation 2.8. The time t + 1decisions are conditioned
on information available at time t+1. The optimal time t decisions depend
on the information, available at time t, about the time t+ 1 decisions.

Next, we show that the remaining necessary conditions reproduce those ob-
tained using the method of Lagrange. In particular, we want to show that
the social cost of carbon reproduces equation 2.13 and that the optimality
condition for extraction reproduces equation 2.14. The first order conditions
with respect to K2,t, E1,t and Et are, respectively,

−∂F1,t

∂Kt

βEt

(
∂Jt+1

∂Kt+1

)
+ λ2,t

∂F2,t

∂K2,t

= 0,

∂F1,t

∂E1,t

βEt
∂Jt+1

∂Kt+1

= λ2,t
∂F2,t

∂E2,t

,

and

βEt

(
∂Jt+1

∂Kt+1

∂F1,t

∂St

(1− d0) +
∂Jt+1

∂Et

− ∂Jt+1

∂Rt+1

)
= λ2,t

(
1− ∂F2,t

∂E2,t

)
. (2.20)

An increase in Et increases St by 1−d0 units, leading to a decrease in output
(and a corresponding decrease in next period capital stock) of ∂F1,t

∂St
(1− d0).

The increase in Et also increases the final element in the vector Et, a state
variable in period t+1. The additional extraction of fossil fuels also decreases
by one unit the t+1 stock of fossil fuels, another state variable in period t+1.
The three terms on the left side of equation 2.20 measure the present value
expected effect of these changes. The right side of the equation equals the
increase in energy available for the final goods sector, due to the increased
extraction of fossil fuels, times the shadow value of this increase.

With a view to emphasizing the correspondence between the two solution
methods, and also in order to develop intuition about the meaning of the
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partial derivatives of the value function, we define λ1,t = βEt

(
∂Jt+1

∂Kt+1

)
. With

this definition, for both methods, U ′ (Ct) = λ1,t; compare equations 2.7 and
2.19. With the method of Lagrange, λ1,t =

∂L
∂F1,t

, the shadow value of the

final good: the marginal increase in the Lagrangian L, with respect to an

increase in the final good, F1,t. With the DP method, λ1,t = βEt

(
∂Jt+1

∂Kt+1

)
,

the expected present value of an additional unit of capital in the next period,
which (because of optimality) equals the marginal value of an additional unit
of the final good in the current period. We also define βEt

∂Jt+1

∂Rt+1
= µt, the

shadow value of the resource. In the DP setting βEt
∂Jt+1

∂Rt+1
equals the present

value expected marginal increase in the continuation payoff, due to an extra
unit of the stock. With the method of Lagrange, µt equals the marginal
increase in the Lagrangian, due to an extra unit of the stock.

With the second definition, and rewriting equation 2.20, we obtain

λ2,t
∂F2,t

∂E2,t

= λ2,t − βEt

(
∂Jt+1

∂Kt+1

∂F1,t

∂St

(1− d0) +
∂Jt+1

∂Et

)
+ µt. (2.21)

The underlined expression equals the social cost of carbon. The first term
equals

βEt
∂Jt+1

∂Kt+1

∂F1,t

∂St

(1− d0) = β
∂F1,t

∂St

(1− d0)Et
∂Jt+1

∂Kt+1

= U ′ (Ct)
∂F1,t

∂St

(1− d0) ,

where the last equality uses equation 2.19. This expression equals the utility
cost of climate-related damage arising from current emissions. The second
term, βEt

∂Jt+1

∂Et
, equals the change in expected present value of the subsequent

payoff (the continuation value J (t+ 1)) due to an additional unit of lagged
emissions.

Comparing equation 2.21 with equation 2.14 shows that the two are identical
if and only if the social cost of carbon, λst, defined in equation 2.13, actually
equals the negative of the underlined expression in equation 2.21 – as we
asserted in the previous paragraph. Using equation 2.19, we know that the
first term in this expression equals U ′ (Ct)

∂F1,t

∂St
(1− d0), so we only need to

obtain a formula for βEt
∂Jt+1

∂Et
.

To obtain this formula, we differentiate the DPE 2.18 with respect to Et−1,
using the envelope theorem. Recall that Et−1 is the first element of the
state variable Et−1. A marginal increase in Et−1 has two effects. First, it
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increases St by 1 − d1 units, lowering period t output by ∂F1,t

∂St
(1− d1) and

second, it increases the second element of Et (part of the state variable in
period t+ 1). Using these facts and the envelope theorem,

∂Jt
∂Et−1

= βEt

(
∂Jt+1

∂Kt+1

∂F1,t

∂St

(1− d1) +
∂Jt+1

∂Et−1

)
.

Advancing this equation one time period (because we want an expression for
∂Jt+1

∂Et
) gives

∂Jt+1

∂Et

= βEt+1

(
∂Jt+2

∂Kt+2

∂F1,t+1

∂St+1

(1− d1) +
∂Jt+2

∂Et

)
. (2.22)

Our next goal is to eliminate ∂Jt+2

∂Et
from equation 2.22 using repeated sub-

stitution; we want to write the right side of this equation as the discounted
sum of the single period effects of higher lagged emissions. Repeating the
procedure that led to equation 2.22, we write ∂Jt+2

∂Et
as

∂Jt+2

∂Et

= βEt+2

(
∂Jt+3

∂Kt+3

∂F1,t+2

∂St+2

(1− d2) +
∂Jt+3

∂Et

)
.

Substitution gives

∂Jt+1

∂Et

= βEt+1

(
∂Jt+2

∂Kt+2

∂F1,t+1

∂St+1

(1− d1) + βEt+2

(
∂Jt+3

∂Kt+3

∂F1,t+2

∂St+2

(1− d2) +
∂Jt+3

∂Et

))
.

Recall that the law of iterated expectations states that the unconditional
time t expectation of an event at (for example) time t+ 2 equals the time t
expectation of the conditional time t+ 1 expectation of this event. We now
use repeated substitution the law of iterated expectations to obtain

∂Jt+1

∂Et

= Et+1

(
∞∑
s=1

βs−1

(
β
∂Jt+1+s

∂Kt+1+s

)
∂F1,t+s

∂St+s

(1− ds)

)
.

We simplify this expression (for s ≥ 1) as follows:

Et+1β
∂Jt+1+s

∂Kt+1+s

∂F1,t+s

∂St+s
(1− ds) = Et+1Et+sβ

∂Jt+1+s

∂Kt+1+s

∂F1,t+s

∂St+s
(1− ds)

= Et+1
∂F1,t+s

∂St+s
(1− ds)Et+sβ

∂Jt+1+s

∂Kt+1+s
= Et+1U

′ (Ct+s)
∂F1,t+s

∂St+s
(1− ds) .
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The first equality uses the law of iterated expectations, the second uses the
fact that ∂F1,t+s

∂St+s
(1− ds) is known at time t+ s, and the third uses equation

2.19. With this expression, we have

∂Jt+1

∂Et

= Et+1

(
∞∑
s=1

βs−1U ′ (Ct+s)
∂F1,t+s

∂St+s

(1− ds)

)
.

Consequently,

Et
∂Jt+1

∂Et

= Et

(
∞∑
s=1

βs−1U ′ (Ct+s)
∂F1,t+s

∂St+s

(1− ds)

)
. (2.23)

Using this expression, the underlined term in equation 2.21 simplifies to

Et

(
∞∑
s=0

βsU ′ (Ct+s)
∂F1,t+s

∂St+s

(1− ds)

)

which equals the negative of the social cost of carbon, −λst, given in equation
2.13.

In summary, the method of Lagrange and the DP approach yield the same
Euler equation for consumption, the same optimality condition for extraction,
and the same expression for the social cost of carbon.

2.3 Comments on functional assumptions

Here we discuss the climate model in equation 2.3, and then the choice of
functional forms that lead to closed form expressions for the savings rule and
the optimal carbon tax.

Equation 2.3 expresses the current climate variable, St, as a linear function
of emissions from periods −T through t. This formulation is quite general,
because it does not restrict the decay parameters di. Golosov et al choose a
parameterization of di involving three parameters. Gerlagh and Liski (2012)
choose di in order to match the historical record of emissions releases and
carbon accumulation. This model requires that carbon stocks are indepen-
dent of emissions prior to −T . For sufficiently large T , that limitation is
unimportant when dτ approaches 1 as τ becomes large.
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However, this model requires one additional element of the state variable,
with each additional time period. Due to the closed form expressions for
savings and the optimal tax, arising from the functional assumptions de-
scribed in Section 2.1.1, the requirement of additional information does not
lead to an increase in complexity. However, more general functional forms
do not lead to closed form decision rules, and require numerical solutions.
The difficulty of solving such a model increases rapidly in the dimension of
the state variable, a feature known as the “curse of dimensionality”. This
feature makes parsimonious models desirable.

A more common approach to modeling the climate uses “boxes” to allow
past emissions to affect the variable of interest. Each box requires a state
variable. For example, in DICE, the average atmospheric temperature in the
next period depends on current temperature (one state variable) and on the
stock of atmospheric carbon (a second state variable) and on average oceanic
temperature (a third state variable). Current emissions change the stock
of atmospheric carbon; the next period oceanic temperature depends on the
current oceanic and atmospheric temperatures. Climate-related damages
depend on the atmospheric temperature. In this model, current emissions
affect only future temperatures, and their effect dies out slowly.

Golosov et al.’s formulation achieves the same feature, by appropriate choice
of the dτ parameters. If the three (or finite n) box climate model is linear in
state variables, the current temperature can be written as an infinite weighted
sum of past emissions, in which the weights are functions of the parameters
of the dynamic system. (DICE’s climate model is not linear in the state.)
Thus, the linear box model and Golosov et al.’s general formulation are
not nested. The former imposes restrictions (arising from the dynamics
in the box model) on the coefficients of lagged emissions, whereas Golosov
et al.’s general formulation does not. The latter ignores emissions prior
to −T , whereas the former takes into account all previous emissions. For
the purpose of calibrating a model, these differences are likely unimportant.
However, the linear box model is parsimonious, requiring only a few state
variables to describe the climate. In contrast, the Golosov et al. description
of the climate requires a state variable containing t+ T variables.

To illustrate the relation between the box model and Golosov et al.’s formu-
lation, consider a one-box linear model, with

St+1 = ηSt + ρMt and Mt+1 = δMt + Et, (2.24)
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where St is the average atmospheric temperature, as a deviation from pre-
industrial levels,Mt is the concentration of atmospheric greenhouse gasses, as
a deviation from pre-industrial level, and Et is emissions, as before. Climate
damages depend on S. Emissions decay at a constant rate, 1 − δ, and
current emissions affect the temperature with a lag of two periods. A one
unit increase in emissions at t increases the carbon stock at t+1 by one unit,
and increases temperature at t+2 by ρ units. We assume that 0 < η < 1 and
0 < δ < 1, so that the effect of emissions, on future temperature, eventually
dies out.

We use the lag operator, L, where Lsxt = xt−s so rewrite system 2.24 as

(1− ηL)St = ρLMt and (1− δL) = LEt

or

St =
ρL

(1− ηL)
Mt and Mt =

L

(1− δL)
Et.

Substituting the second equation into the first gives

St =
ρL

(1− ηL)

L

(1− δL)
Et =

ρL2

(1− ηL) (1− δL)
Et

Using the fact that (for 0 < η < 1)

1

1− ηL
=

∞∑
s=0

(ηL)s ,

we write the last expression as

St =

(
∞∑
s=0

(ηL)s
)(

∞∑
s=0

(δL)s
)
ρL2Et.

This expression shows that St depends on emissions during periods t−2 and
before, as noted above. The product(

∞∑
s=0

(ηL)s
)(

∞∑
s=0

(δL)s
)

is a polynomial in L, with coefficients depending on η and δ. Assuming that
η ̸= δ, the coefficient of Lτ equals

τ∑
s=0

ηsδτ−s =
1

η − δ

(
ητ+1 − δτ+1

)
.
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This one-box model is a special case of the Golosov et al. formulation, with

d0 = d1 = 1 and ds = 1− ρ
1

η − δ

(
ηs−1 − δs−1

)
for s ≥ 2

and T = ∞.

For example, if the time step equals a decade, and the half life of a unit of
atmospheric carbon is 15 decades, then δ15 = 0.5, or δ ≈ 0.955. Suppose
also that at a constant carbon stock, M∞, it would take 10 decades for a
deviation of the temperature, from its steady state level S∞ = ρ

1−η
M∞, to

fall by 50%. This assumption implies η ≈ 0.933. The time profile of 1− ds,
the effect of a unit of emissions at t − s on the temperature at t, is more
informative than the time profile of ds. The magnitude of ρ depends on the
choice of units, and affects the magnitude but not the profile of 1− ds. We
therefore ignore ρ (equivalently, set ρ = 1), and show the graph of 1− ds, for
s ≥ 2 in Figure ??, for the values of η and δ given above. For this example,
the effect of a unit of emissions at time t on the temperature at time t + s
increases over time, (for s > 2) over the next 18.6 periods (186 years). The
effect of a unit emissions at t, on temperature at t + s, is 6.8 times as large
in 186 years as in twenty years. Moreover, it takes more than 80 decades for
the magnitude of the effect, on temperature, of emissions at t to fall below
its effect two decades after release; it takes over 96 decades for the effect to
fall to 50% of its two-decade level.

This simple example illustrates several points. The effect of emissions on
temperature change is likely non-monotonic with respect to time. Emissions
may have negligible effect for decades, after which its effect may increase and
remain pronounced for many decades. If we try to approximate the type
of time profile shown in figure ??, using the history of emissions, we may
need to include many lags – 80 to 100 in the example above. Unless the
problem has a closed form solution, it’s analysis (using numerical methods)
would likely be impractical when we represent the climate using the history
of emissions. However, the same model can be represented exactly (without
truncating the history) using only two state variables, lagged temperature
and carbon stock.

The particular functional assumptions described in Section 2.1.1 lead to a
simple solution, making the lack of parsimony of the climate model irrele-
vant. The important functional assumptions are: utility is logarithmic in
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consumption; damages are exponential in S, which is linear in lagged emis-
sions; production of the final good is Cobb Douglas; all capital decays in a
period; resource extraction is costless when stocks are positive, and infinite
thereafter. Collectively, these assumptions imply that the optimal savings
rate is constant, and that fact implies that marginal social damages are a
constant proportion of output. With constant marginal damages, a familiar
result states that the optimal emissions tax is a constant. Here, marginal
damages are a constant fraction of output, leading to a straightforward mod-
ification of that result: the optimal emissions tax is constant fraction of
output.

The optimal savings rate is not only constant, but also independent of all
climate-related concerns: the savings rate depends only on the discount fac-
tor, β, and on capital’s share of value added, α. A model without any
climate variables or resource constraint leads to the same savings rate, under
logarithmic utility and Cobb Douglas production. Arguably, the reason for
using a general equilibrium model, in which capital is endogenous, to study
climate policy, is that climate related damages are sufficiently important that
they might affect savings. That is, it might be optimal to change the sav-
ings portfolio, leaving (perhaps) more environmental capital (a lower stock
of S) and less man-made capital to agents in the future. The functional
assumptions in this model rule out this possibility. The closed form solution
arises because the functional assumptions eliminate (arguably) the reason for
studying the emissions and the savings decisions in a single model.

This observation suggest a modelling alternative: take the savings rule as an
exogenous, but not necessarily linear function of output. Then solve a more
general model in which damages are not necessarily linear in output, so that
the optimal tax is not necessarily a constant fraction of output. With such
a model, we can study the relation between the social cost of carbon and the
stock of capital and climate-related variables.

2.4 Problem set

Use the linear “one-box” model in equation 2.24 to obtain the Euler equation
for consumption and the necessary condition for optimal emissions, using
dynamic programming. You need only mimic the procedure used in Section
2.2, making modifications to account for the different climate model. (The
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purpose of this exercise is to give students the opportunity to practice the
manipulations needed to derive optimality conditions.)
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3 The Linear Quadratic Problem and Pollu-

tion Control

A famous problem in environmental economics ranks social welfare under
taxes and quotas when the policymaker and firms have asymmetric infor-
mation about abatement costs. Early versions of this problem study the
situation where the firm creates a flow pollutant, i.e. one that dissipates
quickly. In this case, both the regulator and the firms’ problems are static.
Under particular functional assumptions, taxes lead to higher welfare than
quotas if and only if the slope of the marginal abatement cost curve is greater
than the slope of the marginal damage curve. We begin this chapter by dis-
cussing the problem of taxes versus quotas in the static setting.

A famous problem in control theory involves the case where the payoff is
linear-quadratic in the state and control, and the equation of motion is linear
in the state and the control. This problem has a closed form solution. If, in
addition to the linear-quadratic structure, the stochastic element enters the
equation of motion additively, the problem becomes even simpler. Section
3.2 presents the basics of the linear-quadratic (LQ) control problem. This
problem is intrinsically important because it can be applied to many settings,
and it is pedagogically useful because it provides one of the simplest examples
of a dynamic problem that can be solved in closed form. Most dynamic
problems do not admit a closed form solution, but the intuition obtained
from solving the LQ problem is useful for understanding algorithms employed
in numerical solutions of more complicated problems.

These two problems fit together because the LQ control problem provides
a means of generalizing the taxes versus quotas question from a static to a
dynamic setting. In the most obvious generalization, and the one that has
attracted most attention, the dynamics arise because firms create a stock
rather than a flow pollution. A flow pollution is one that dissipates in a
fairly short period of time; examples might include particulates and SO2.
A stock pollutant, in contrast, persists for a long period of time; CO2 is
the quintessential stock pollutant. The LQ control problem thus provides a
model for comparing taxes and quotas for the control of greenhouse gasses.

In order to construct a tractable model, stock pollutants are often modeled
as if they decay at a constant rate. As with any model, this one is only an
approximation to a complex reality. The constant decay rate implies that
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the equation of motion for the pollution stock is linear in the stock and in
emissions. The model can be calibrated using the half-life of a the pollutant,
the amount of time it takes a given quantity to decay into half its initial level.
[A table with the approximate half-life of different pollutants would be useful
here.] For example, CO2 has an estimated half-life greater than 80 years.

Although the half-life of a pollutant provides an obvious means of distin-
guishing between stock and flow pollutants, this measure can be misleading.
Pollutants such as particulates disappear rapidly from the atmosphere once
emissions cease; due to this short half-life, particulates are typically consid-
ered flow pollutants. However, the effects of this kind of pollution may
accumulate in people or animals. The effect of an extended period of past
exposure may persist long after emissions stop. In this case, if we are in-
terested in the health effects of pollution, a dynamic model is appropriate.
Here, however, the stock of the pollution should be understood not as the
atmospheric stock, but as a measure of accumulated exposure.

The stock aspect of pollution is the most obvious source of dynamics, but
dynamics can also arise because of economic rather than chemical/physical
considerations. For example, suppose that firms have convex investment
costs, as discussed in Chapter 1. Here, their current investment depends
on their belief about the future stream of payoffs. When firms have convex
investment costs for abatement capital, their investment depends on their
beliefs about future pollution policies. In this case, firms have a dynamic
problem even when they create a flow pollutant. The regulator’s problem is
also dynamic in this case. We briefly consider this kind of problem.

3.1 Taxes versus quotas in a static setting

We begin with the static problem, due to Weitzman (1974). In this setting,
firms have private information about a parameter that affects their marginal
abatement costs. The regulator knows the distribution but not the realiza-
tion of this random variable, and must choose between regulating pollution
by means of a tax or a quota. We assume that the optimal tax and the
optimal quota are both binding for all realizations of the cost parameter:
firms facing the quota emit at the quota level, and firms facing the tax emit
at a positive level.

Under a tax, the firm emits to the point where marginal abatement costs
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equal the tax. Since marginal abatement costs are random (from the per-
spective of the regulator) emissions are also random. By means of a tax
the regulator can choose the expected level of emissions. The firm then
“arbitrages emissions over states of nature”, in the sense that the marginal
abatement costs are the same in every state of nature. In contrast, under a
binding quota on emissions, the firm emits at the same level in every state
of nature.

Jensen’s Inequality plays an in important role in the analysis of this problem,
and many others in economics. Jenensen’s inequality states that if f (θ) is
a convex function of θ, a random variable with mean θ̄, then Ef (θ) ≥ f

(
θ̄
)
,

with the inequality strict if f is strictly convex. The inequality is reversed
if f is a concave function.

In evaluating social welfare under the tax, we always consider tax-exclusive
abatement costs. In this setting we treat the tax payments as a pure transfer
from firms to the general taxpayer; their cost to firms is offset by their benefit
to the public, so their net direct effect on welfare is zero. The tax affects
welfare only indirectly, because it affects the level of pollution.

Consider an arbitrary quota (not necessarily the optimal one) and a tax that
leads to the same level of emissions in expectation. The ability under the tax
to arbitrage emissions over states of nature, i.e. the flexibility of choosing ac-
tual emissions, and the lack of this flexibility under the quota, means that the
expected (tax exclusive) abatement costs are always lower under the tax than
under the quota. However, when damages are convex in emissions, Jensen’s
Inequality implies that expected damages under the tax (where emissions are
a random variable) is greater than the damages under the quota. Thus, the
sources of the relative advantage of the tax over the quota is straightforward:
the tax leads to lower expected (tax-exclusive) abatement costs and higher
expected environmental damages compared to the quota. With this intu-
ition, we now turn to the specific model which makes it possible to see how
parameter values determine the ranking of policies.

Abatement equals the difference between the actual level of emissions and the
Business as Usual (BAU) level. Abatement costs are quadratic in abatement,
so the benefit of emissions is a quadratic function of emissions. We assume
that the intercept of the marginal benefit function equals a constant a plus
a mean-zero random variable θ with a constant and known variance σ2. The
slope of marginal benefits is a known constant b. The firm, but not the
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regulator, knows the value of θ. The firm’s benefit of emissions is a concave
function. An increase in emissions corresponds to a decrease in abatement,
and therefore a decrease in abatement costs. In the linear-quadratic setting,
the benefit of emissions, e, is

f̃ + (a+ θ) e− b

2
e2. (3.1)

Under Business as Usual (BAU), the firm chooses emissions, conditional on
the realization of θ, to maximize its benefits. Thus, the BAU level of benefits
and the BAU level of emissions are the random variables

Firm’s BenefitsBAU =
1

2

2f̃ b+ a2 + 2aθ + θ2

b
(3.2)

eBAU =
a+ θ

b
. (3.3)

This model is appropriate if there is a single representative firm with cost
stock θ ∼ (0, σ2), if there are many firms with this distribution of cost shocks,
or many firms each with a particular cost parameter. In the latter case, we
model the distribution across firms of the cost parameter using the distri-
bution θ ∼ (0, σ2). In every case except for the representative firm model,
different firms have different realized costs. In cases where firms have dif-
ferent realizations of θ, we assume that they are able to trade their emissions
quotas, and that the resulting competitive equilibrium is efficient. There-
fore, in equilibrium, all firms have the same marginal abatement cost under
the quota, but the level of marginal abatement costs differs for different re-
alization of the cost shock, i.e. for different states of nature.

When the regulator sets a tax p per unit of emissions, the firm maximizes
the benefit of emissions minus the cost of tax. The firm’s problem is

max
e
f̃ + (a+ θ) e− b

2
e2 − pe.

The first order condition to this problem implies that the level of emissions
is

e∗ =
a− p

b
+
θ

b
≡ z +

θ

b
. (3.4)

In order to simplify comparisons with quotas, we can think of the regulator
as choosing z, the expected level of emissions under a tax, rather than the
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tax, p. Substituting e∗ into the firm’s benefit function, expression 3.1, and
taking expectations, gives the expected benefit of emissions under the tax
policy z:

f̃ + az +
σ2

2b
− b

2
z2. (3.5)

As we noted above, this expression for expected benefits excludes the firm’s
tax payments. From the standpoint of the regulator, these tax payments are
a pure transfer: they count as a cost to the firm, but a benefit to taxpayers
at large, and therefore do not enter the calculation of social benefits.

The damage is quadratic in emissions

D(e) =
G

2
(e− ē)2

where ē is a known parameter. Under taxes the level of expected damage is

Eθ
G

2
(e− ē)2 = Eθ

G

2

(
z +

θ

b
− ē

)2

=
G

2
(z − ē)2 +

G

2

σ2

b2

The regulator’s problem under taxes is

maxz

[
f̃ + az + σ2

2b
− b

2
z2 −

(
G
2
(z − ē)2 + G

2
σ2

b2

)]
=

(
f̃ + σ2

2b2
(b−G)

)
+maxz

[
az − b

2
z2 −

(
G
2
(z − ē)2

)]
.

(3.6)

Under quotas the regulator chooses emissions, e, rather than expected emissions, z.
Because of the assumption that the quota is binding in all states of nature,
the single period expected benefits and damages under the quota e are

expected benefits: f̃ + ae− b

2
e2

damages:
G

2
(e− ē)2 ,

and the regulator’s problem is

maxe

[
f̃ + ae− b

2
e2 −

(
G
2
(e− ē)2

)]
f̃ +maxe

[
ae− b

2
e2 −

(
G
2
(e− ē)2

)]
.

(3.7)
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The maximization problems 3.6 and 3.7 are exactly the same, with z replaced
by e. Therefore, the optimal values of these two variables, e and z, are the
same. This fact is an example of a more general principle, which we define
here.

Definition 1 The “Principle of Certainty Equivalence” states that the opti-
mal decision in a stochastic problem is identical to the optimal decision in the
corresponding deterministic problem in which we replace the random term by
its expected value. Thus, the optimal decision (but not the value of the pro-
gram) is independent of the variance and all higher moments of the random
term.

The Principle of Certainty Equivalence does not hold for general problems,
and for that reason it is perhaps unfortunate that the result has become
known as a “Principle”. However, the Principle of Certainty Equivalence
does hold when the objective is a quadratic function of the control variable,
the constraint is linear, and the random term enters the problem additively.
All of these features hold in this static problem, and also in a dynamic gen-
eralization that we consider later.

The equality of the optimal e and the optimal z means that the expected level
of emissions under the optimal tax equals the deterministic level of emissions
under the optimal quota. Of course, the actual levels differ. Under quotas,
the regulator chooses emissions, so this variable is deterministic. Under
taxes, the regulator chooses the expected level of emissions, and emissions
are random.

The difference between the expected social welfare under taxes and under
quotas, obtained by subtracting the last line of equation 3.7 from the last
line of equation 3.6, and using the fact that the functions after the two max
operators are equal, is

Welfaretaxes − Welfarequotas =
σ2

2b2
(b−G) .

Recall that the Principle of Certainty Equivalence states that optimal actions,
not the values of the program, are independent of the higher moments – here,
the variance of θ. The payoff under taxes is greater than the payoff under
quotas if and only if b > G.
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The magnitude of the difference is proportional to σ2, but the sign of the
difference does not depend on this parameter. This fact is fortunate, because
it may be difficult to measure σ2. However, the fact that σ2 is proportional
to the variance of BAU emissions, does provide an avenue for calibrating
this model. It would be difficult to obtain data on the level of benefits,
but in many cases it is practical to estimate a function like equation 3.3. If
we can also obtain an estimate of b and G, it is then possible to construct
an estimate of σ2 and thus estimate the magnitude of the gain from using
the the welfare-maximizing policy. In any case, it is convenient to have a
qualitative result, such as the ranking of taxes and quotas, depend on only
two parameters.

If we measure costs and damages in dollars and e in units of tons, then the
units of both b and G are

dollars

(tons)2
.

Since b and G have the same units, it sensible to compare them. This
observation becomes important when we move to the dynamic context, where
the units of b and G are different.

Figure 1 shows the expected marginal benefits of emissions and the marginal
damages of emissions, the solid lines. The horizontal and vertical lines show
the optimal tax and the optimal quota. The dashed line shows the marginal
benefit of emissions for a realization of the cost shock θ > 0. In this figure
b >> G. The small heavily shaded triangle denoted D is the deadweight
loss under the tax when θ takes the particular positive value shown in the
figure. Under the tax, the firm increases its emissions from the expected
level (“quota”) to a level slightly too high (from the standpoint of social
welfare), resulting in a small deadweight loss. Under the optimal quota,
the level of emissions is fixed at much too low a level (from the standpoint
of social optimality) for this particular value of θ, and the deadweight loss
is the large triangle E. As the relative magnitudes of b and G change, the
relative size of the triangles, and thus the ranking of policies, can change.

3.1.1 A different perspective

We can obtain slightly different intuition about this problem by writing the
firm’s payoff in terms of abatement costs rather than benefits. Abatement
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is the difference between BAU emissions and actual emissions. Using the
fact that eBAU = a+θ

b
, if actual emissions are e, then abatement, A, equals

a+θ
b

− e. Table 1 summarizes the levels of abatement and emissions under
the two policies. The table shows that under taxes emissions are random
and abatement is deterministic, whereas under quotas emissions are deter-
ministic and abatement is random. Abatement is deterministic under the
tax because there emissions and abatement costs are perfectly positively cor-
related; therefore, the difference between the two is independent of the cost
shock. In contrast, under the quota emissions are independent of the cost
shock; therefore the difference between BAU emissions and actual emissions
is random.

tax = a− zb quota = e

emissions z + θ
b

e

abatement a
b
− z a+θ

b
− e

Table 1: emissions and abatement under taxes and quotas

The social cost of abatement is simply the difference between the firm’s
benefits under BAU, given by equation 3.2, and its (tax-exclusive) benefits
under regulation:

1

2

2f̃ b+ a2 + 2aθ + θ2

b
−
[
f̃ + (a+ θ) e− b

2
e2
]
=

1

2
bA2.

With taxes, abatement and abatement cost are non-stochastic, but emissions
and environmental damages are random. Under quotas, abatement and
abatement costs are random, but emissions and environmental damages are
non-stochastic. Moreover, by the Principle of Certainty Equivalence, the
expected levels of emissions (and abatement) are the same under the two
policies.

The policy ranking depends on whether the regulator prefers society to have
random abatement costs (under quotas) or random damages (under taxes).
Both abatement costs and damages are convex quadratic functions of abate-
ment. By Jensen’s Inequality, greater convexity increases the expectation
of such a function. If b > G then abatement costs are more convex than
damages; in this case, society is willing to accept random damages in order
to obtain certain abatement costs, so the regulator prefers taxes. If b < G
the ranking is reversed.
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3.1.2 Cost variations

Most of the economic analysis focuses on the relative efficiency of the two
policies, as above. However, some proponents of the tax point out that
taxes have an additional advantage in that they render the price of emissions
constant. In contrast, under tradable quotas, the price of emissions, equal to
the marginal cost of abatement, is a random variable, equal to bA = a+θ−be.
Thus, under quotas the variance of price equals the variance of θ, σ2. To
the extent that firms – either polluters or those firms investing in abatement
technology – dislike price variation, taxes have an advantage apart from
efficiency considerations.

Firms are likely more concerned about their average than their marginal
abatement costs. The fact that the marginal abatement cost is steeper
than the average abatement cost (when costs are convex) means that aver-
age abatement costs vary less than marginal abatement costs. In the linear
model, the marginal abatement cost curve is twice as steep as the average
abatement cost, causing the variance of marginal costs to be four times the
magnitude of the variance of the average cost. The focus on the price of emis-
sions permits (equal to marginal, not average costs) can give an exaggerated
view of the importance of cost variation.

The ability, under the tax, to arbitrage abatement over states of nature means
that expected tax exclusive abatement costs are lower under the tax than un-
der the quota; this difference is the economic advantage of taxes, as discussed
above. Economists are typically interested in the tax exclusive investment
costs, because the emissions tax revenue is a transfer from tax-paying firms
to society; such transfers have no effect on efficiency, and therefore are, for
good reason, usually ignored in economic analyses.4

Firms, however, care about tax inclusive abatement costs; for this reason,
firms prefer a cap and trade policy, with freely distributed permits, rather
than a tax policy. Economic discussions that focus on marginal costs (which
vary under the quota and are constant under the tax) provide a misleading
comparison of the cost variability. The focus on marginal costs incorrectly
suggests that the cost variation is zero under taxes and high under quotas.

4However, emissions tax revenue or auction revenue can replace tax revenue raised by
distortion-inducing taxes (e.g. taxes that increase labor costs). This “double dividend”
creates an additional argument for taxes, and for the auctioning of permits under cap and
trade.
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Business people understand average costs, but may be vague about marginal
cost. For the linear model above, the variance of average (tax inclusive)
abatement costs under the tax policy is four times as large as the variance
of average abatement costs under the freely distributed quota (Problem 1.a).
The larger variance is due to the variance of the tax payments, which are non-
existent under the freely distributed quota. Of course, this comparison may
not be the relevant one: to the extent that quota rights are auctioned, the
variability of the emissions price increases the variability of average abate-
ment costs (inclusive of payments for permits).

Although firms care more about average than marginal costs – because they
understand the former better – what they really care about is total (tax
inclusive) abatement costs. If, in addition to the assumptions of the linear
model, we also assume that the cost shock is normally distributed,5 then
we can obtain a formula for the ratio between the variance of costs under
the freely distributed quota, to the variance under the tax (Problem 1.b).
Using this formula with plausible numerical values, it appears that the two
variances do not differ by much.

In summary, using the linear model that provides the intuition behind most
of the “tax versus quotas” literature, we find (not surprisingly) that the tax
inclusive expected abatement costs are higher than the expected abatement
costs under the quota with freely distributed permits, and that the variances
of abatement costs are essentially the same under the two policies. Therefore,
unless firms are extraordinarily risk averse, they always prefer the freely
distributed quota instead of the tax.

This result is important because much of the political economy analysis fa-
voring taxes does so on the basis that these lead to less variable costs. That
claim is correct, if we understand “costs” to mean “economic costs”, i.e.
costs exclusive of tax payments. But that is not how most business people
would understand the term. To them, costs include tax costs. Since the
point about cost variability is often made in the context of a discussion of
the political economy of the policies, it probably makes more sense to use
the term “costs” as business people understand it. With that usage, the

5We assumed that the quota is binding in every state of nature. With normally
distibuted costs, there will be some realizations of θ for which any quota is not binding.
Thus, the assumption of normally distributed cost shocks is not consistent with the model,
but it nevertheless might be useful as a means of obtaining an approximation to assess the
magnitude of cost variation under different policies.
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political economy claim that taxes are better than quotas because they lead
to greater cost certainty, is overstated.

3.2 The LQ control problem

Here we study a LQ problem in which both the state variable and the control
variable are scalars. This specialization makes the calculations transparent,
and helps in understanding the nature of the problem. The generalization
where the state variable and/or control variable are multi-dimensional uses
matrix algebra. Denote x as the state variable and u as the control variable.
We begin with the following rather obvious observation:

Remark 1 If Q (x, u) is a concave quadratic function of x and u then

Q∗ (x) = max
u

Q(x, u)

is a quadratic function of x and

u∗ (x) = argmaxQ(x, u)

is a linear function of x.

Thus, we know that for the LQ problem, the value of the optimal program
is quadratic in the state variable and the optimal control variable is a linear
function of the state variable. We normalize time so that the initial period
is t = 0, and study the following LQ problem

maxE0

T∑
τ=0

βτ

(
ax2τ + bu2τ

2

)
(3.8)

subject to
xτ+1 = cxτ + nuτ + vτ for τ ≥ 0 and x0 given. (3.9)

where v is an iid r.v. with mean 0 and variance σ2 and a < 0, b < 0, so
the problem is concave in x, u. We make no assumptions about the random
variable, except that it has a zero mean and finite variance. The expectation
operator in expression 3.8 is conditioned on information at time the beginning
of the problem, time t = 0.

We note the following features of this problem.
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1. The random variable enters the equation of motion additively. This
additivity is an essential feature of the problem. Section 3.3 discusses
an alternative.

2. This problem could be generalized by including a bilinear term, xu, in
the objective, a constant and terms that are linear in x and u in the
objective, and a constant in the equation of motion, with little increase
in complexity. In the interests of simplicity we do not include them,
but we later discuss how their inclusion changes the solution. Note
that by including a constant in the equation of motion we can relax
the assumption that the random variable has mean zero.

3. Time enters the model only via the constant discount rate, β, and
the number of periods, at the initial time, remaining in the problem,
T . The other parameters of the problem, a, b, c, n, β and σ are time-
invariant. These assumptions mean that in the limit as T → ∞ the
problem becomes autonomous. Recall that an autonomous problem is
one in which calendar time enters explicitly only via constant discount-
ing.

For an autonomous problem, we obtain a stationary control rule, defined as
a function that depends on the state variable but not on calendar time, and
which maps the state variable into the control variable. In a steady state,
the value of the state variable, and thus the value of the control variable, are
constant. Outside of a steady state, the state variable changes over time, and
thus the optimal control also changes over time; but the function mapping
the state variable into the control variable does not change over time. Our
use of time-invariant parameters is an important specialization, but it makes
the notation simpler. Our use, initially, of a finite value of T , makes it
simple to construct the optimal solution, and also makes apparent the kind
of notational changes that would be needed if the parameters depended on
calendar time.

It is important to understand the distinction between current value and
present value payoffs. Suppose that we have a stream of single-period payoffs,
{yt, yt+1, ...yt+T}, where T is the length of the sequence and t is an arbitrary
calendar time. With a constant discount rate β, the current value of this
stream of payoffs at the time the sequence begins, time t, is

∑T
τ=0 β

τyt+τ .

The present value at time t = 0 of this payoff is βt
∑T

τ=0 β
τyt+τ . The two
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payoffs differ by the factor βt, which discounts a payoff at time t back to
time 0. For our purposes it is simpler to work only with the current value
of the stream of payoffs.

The dynamic programming equation (DPE) states that the value of the pro-
gram (a function of the current state variable and the number of periods
remaining in the problem) equals the maximum, over the control variable in
the current period, of the expectation of the sum of the payoff in the current
period, and the discounted continuation payoff. As in Chapter 1, we use a
superscript on a function to denote the number of periods remaining in the
problem. Thus, Js+1 (x) is the current value of the program that begins with
a state variable x when there are s+1 periods left to go. This function does
not depend explicitly on calendar time, so we have do not include calendar
time as an argument. For arbitrary calendar time t, when x denotes the
value of xt, we use x′ to denote the value of xt+1.

The current value DPE is6

Js+1 (x) = max
u

Ev

{(
ax2 + bu2

2

)
+ β [Js (x′)]

}
= max

u

{(
ax2 + bu2

2

)
+ βEv [J

s (x′)]

}
.

Note that the index s for time-to-go decreases as we move forward in calendar
time. If in the current period we have s+1 decisions remaining, then in the
subsequent period we will have s decisions remaining. In this problem, the
expectation is taken over the random variable v. The assumption that this
variable is independently and identically distributed means that it does not
require a time index.

We want to show that the value of the program is quadratic in the state,
Js (x) = ψs + ρs

x2

2
, and in the process find formulae for the endogenous

parameters {ψs, ρs}.7 We use an inductive proof. The first step of the proof

6If we wanted to use present values, we would need to include calendar time. For
example, we could denote V (xt, t;T + 1) as the present value at time 0 of the program
that begins at calendar time t with initial condition xt and ends at calendar time T + 1.
With this notation, βtJT+1−t (x) = V (xt, t;T + 1).

7In order to be consistent with our convention of using superscripts to denote time-to-
go, the reader might prefer to see µs and ρs rather than µs and ρs. However, the paramter
ρ enters subsequent formulae as a quadratic, and it might be confusing to have both the
superscript represent a time-to-go index and an exponent. We therefore use subscripts
on these variables.
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begins in the final period where s = 1 and confirms that the hypothesis is
true for that value of s. The second step confirms that if the hypothesis is
true when there are s periods to go, then it is also true when there are s+ 1
periods to go. In the process of confirming the hypothesis, we also obtain
the optimal control rule.

In the final period, where s = 1, given the current value of the state variable
x, the problem is static and deterministic:

max

(
ax2 + bu2

2

)
.

The solution in the final period is u = 0 (because b < 0) and the value of the
program is ax2

2
. Thus, we see that the hypothesis is true at s = 1 with

ψ1 = 0 (3.10)

ρ1 = a. (3.11)

Under our hypothesis, the DPE when there are s+ 1 periods left to go is

ψs+1 + ρs+1
x2

2
= max

u

((
ax2 + bu2

2

)
+ βEv

(
ψs + ρs

(x′)2

2

))
. (3.12)

Use the relation x′ = cx + nu + v to write the term after the expectations
operator as

ψs + ρs
(x′)2

2
= ψs + ρs

(cx+ nu+ v)2

2
.

Expanding (cx+ nu+ v)2 we have

(cx+ nu+ v)2 = c2x2 + 2cxnu+ 2cxv + n2u2 + 2nuv + v2.

Now take expectations with respect to v to write

Ev (cx+ nu+ v)2 = c2x2 + 2cxnu+ n2u2 + σ2.

We use this expression to eliminate the expectation and rewrite the DPE,
equation 3.12, as

ψs+1 + ρs+1
x2

2

= max
u

((
ax2 + bu2

2

)
+ β

(
ψs + ρs

c2x2 + 2cxnu+ n2u2 + σ2

2

))
max

u

[(
1

2
b+

1

2
βρsn

2

)
u2 + βρscnux+

(
1

2
a+

1

2
βρsc

2

)
x2 +R

]
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which uses the definition

R = β

(
ψs +

1

2
ρsσ

2

)
.

The function R collects terms that do not involve either the state variable or
the control variable. To obtain the last line of the DPE we collected terms
in powers of x,u. Note that the right hand side of the DPE is a quadratic
in u, x. The first order condition for a maximum is sufficient if and only if
the maximand is concave in u. Concavity in u is equivalent to

b+ βρsn
2 < 0. (3.13)

For the time being we merely assume that this inequality holds. Later we
confirm it. Given concavity of the maximand, by Remark 1 we know that
the left hand side (the current value function) is a quadratic in x and the
control rule is linear in x.

We perform the maximization to obtain the control rule

us+1 (x) =
−βρscn
b+ βρsn2

x. (3.14)

The left side of this equation contains the superscript s+ 1 to indicate that
this is the control rule when there are s + 1 periods to go. The argument
of the control rule is the value of the state variable at the time the decision
is made, x. The only non-constant parameter of this control rule, ρs, is
a coefficient of the value function in the next period. Thus, the value of
the control variable in an arbitrary period depends on the value of the state
variable in that period, and on a parameter that describes the value function
in the next period.

The maximized DPE is

ψs+1 + ρs+1
x2

2

=
1

2

ab+ aβρsn
2 + βρsc

2b

b+ βρsn2
x2 (3.15)

+
1

2

2βψsb+ 2ψsβ
2ρsn

2 + βρsσ
2b+ ρ2sσ

2β2n2

b+ βρsn2
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In order for this relation to hold for all values of x, it must be the case that
the term multiplying x on the left side equals the term multiplying x on the
right side, and that the term independent of x on the left side equals the
term independent of x on the right side. We therefore “equate coefficients
of x” in equation 3.15 to obtain the two difference equations

ρs+1 = a+
βρsc

2b

b+ βρsn2
(3.16)

ψs+1 =
1

2

2βψsb+ 2ψsβ
2ρsn

2 + βρsσ
2b+ ρ2t+1σ

2β2n2

b+ βρsn2
. (3.17)

Putting aside the question of concavity – to be confirmed shortly – we have
established that the value function is quadratic in the state variable x, and we
have obtained formulae for the coefficients of that function, ψs, ρs, equations;
in the process we also showed that the optimal decision is a linear function
of the state variable, and we obtained an expression for the optimal control
rule The formulae for ψs, ρs take the form of a pair of differential equations,
3.16 and 3.17, together with their boundary conditions, equations 3.10 and
3.11. Equation 3.16 is known as a “Riccati difference equation”.

We emphasize the following points:

Remark 2 As the index s, time-to-go, increases, we move backwards in cal-
endar time, away from the last period, when s = 1. In this sense, we
determine the parameters of the control rule and the value function by solv-
ing the problem backwards in time. At the beginning of the program we know
all of the values of these parameters. When we have s+ 1 periods to go, we
know that value of the state variable in that period, x, and we use the control
rule, equation 3.14, to obtain the optimal value of the control in that period.
This decision and the subsequent realization of the current random variable
determine x′, the value of the state variable in the next period. That is, we
obtain the endogenous parameters of the value function and the control rule
by solving backwards in time and then we solve for the optimal control and the
value of the state variable on the optimal trajectory forwards in time. This
backward sweep followed by a forward sweep is typical in dynamic program-
ming. It distinguishes dynamic programming from non-linear programming,
because the latter attempts to solve for everything in one fell swoop.
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Remark 3 The difference equations 3.16 and 3.17 are recursive. The equa-
tion for ρ is not a function of ψ, but the equation for ψ is a function of ρ.
Therefore, we can solve for ρ first and then use that solution to solve for
ψ. The fact that we can solve for these two endogenous variables recursively
rather than simultaneously obviously simplifies the solution.

Remark 4 The control rule, equation 3.14, is a function of ρ, but not of
ψ. In addition, from equation 3.16, ρ is not a function of σ. Therefore,
the control rule is not a function of σ. This is an example of the “Principle
of Certainty Equivalence”, which states that we obtain the same control rule
if we set the random term equal to its expected value (here 0). The optimal
control is independent of the variance and all higher moments of the random
variable. This Principle of Certainty Equivalence depends on the fact that
the objective is quadratic, the equation of motion is linear, there are no bind-
ing constraints (e.g. non-negativity constraints), and the random variable
enters the problem additively.

Remark 5 The endogenous parameter ψs is a function of σ. Therefore, the
value of the program (the value function) does depend on the variance – even
though the control rule is independent of the variance.

Remark 6 The control rule is affine, not just linear, in the state variable,
and the value function does not contain a term that is linear in the state
variable. These features are a result of the fact that in our example the
objective does not include terms that are linear in x, u and the equation of
motion does not include a constant. Had we included such terms, the optimal
decision rule would have included a constant, and the value function would
have included a term that is linear in x. That is, we would have Js (x) =
ψs + γsx + 1

2
ρsx

2. The recursive structure of the problem remains: we first
solve the difference equation for ρ, which would be unchanged by the presence
of the new terms; we use that solution to solve the difference equation for γ,
which does depend on the new terms; we then use these two solutions to find
the solution for ψ.

Remark 7 The example above generalizes in a straightforward way to the
case of time-dependent parameters. With time-dependent parameters, there
is no particular advantage to using time-to-go rather than calendar time as
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the index. However, it would be straightforward to modify the formulae above
to include time dependence. For example, suppose that we replace b by a
time-varying parameter bt, where t is calendar time. Using our definition
of time-to-go, at calendar time t there are s = T − t periods to go. We
can define b̃s = bt. For the problem above, b appears on the right side of
the formulae 3.14, 3.16 and 3.17. In each of these formulae we replace b by
b̃s. With time-dependent parameters, the problem is not autonomous even if
T = ∞.

Our final task here is to confirm that the second order condition, inequality
3.13, is satisfied. We begin by rewriting the Riccati difference equation 3.16
as

ρs+1 =
ab+ aβρsn

2 + βρsc
2b

b+ βρsn2
= a+ k (ρs) (3.18)

with

k (ρs) ≡
βρsc

2b

b+ βρsn2
.

We have

k(0) = 0 and
dk

dρ
= βc2

b2

(b+ βρn2)2
> 0. (3.19)

Equations 3.19 imply that ρs ≤ 0 is sufficient to insure ρs+1 < 0. Our
boundary condition states that ρ1 = a < 0. Therefore, by induction, ρs ≤ 0
for all s ≥ 1. This fact together with b < 0 implies that b + βρsn

2 < 0, so
the sufficient condition for optimality is satisfied.

3.2.1 The infinite horizon limit

In the case where the terminal time, T , is finite, so that time-to-go s remains
finite, there is not much more to be said about this problem. However, the
solution simplifies tremendously if we take the limit as T → ∞, which is
equivalent to letting s → ∞. In the limit we obtain a stationary control
rule: ρs and ψs converge to constants. Remark 2 notes that we obtain ρs and
ψs by moving away from the final time period, i.e. by solving the problem
backwards in time, beginning with the terminal time. When T grows, the
horizon, T − t, increases for any finite calendar time t. Our choice of writing
the solution in terms of time to go rather than calendar time makes it easy
to take the limit as the horizon becomes infinite.
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A steady state value of the Riccati difference equation for ρ satisfies

ρ = a+
βρc2b

b+ βρn2
. (3.20)

This equation is known as an algebraic Riccati equation. To emphasize that
this equation is quadratic in ρ, we rewrite it as

0 = βρ2n2 +
(
b− aβn2 − βc2b

)
ρ− ab ≡ h (ρ) . (3.21)

By inspection, h(0) = −ab < 0 and h→ ∞ as ρ→ ∞, so there is a positive
and a negative root of the algebraic Riccati equation; denote these as ρ+ and
ρ−, respectively. We noted above that any negative value of ρs is mapped
into a negative value of ρs+1; because we start with a negative value of ρ1,
we know that every value of ρ must be negative. The steady state must
therefore also be negative. We consequently have only one canditiate for a
stable steady state, the negative root ρ−.

We now need to confirm that the negative root, ρ−, is a stable steady state.
Recall from Chapter 1 that a steady state ρ∞ to equation 3.18 is stable if
and only if

−1 <
d (a+ k (ρ∞))

dρ
= k′ (ρ∞) < 1.

From inequality 3.19 we know that the first inequality is always satisfied,
so we need only confirm that the second is satisfied at the candidate ρ =
ρ−. Rather than confirming this algebraically, it is easier to use graphs.
Figure 2 graphs the right side of equation 3.20 for ρ < −b

βn2 . (The function

is discontinuous at −b
βn2 > 0, but we are not interested in positive values

of ρ.) This graph intersects the 45 degree line at the two roots, ρ− and
ρ+. Using h (ρ), defined in equation 3.21, we see that the graph of the
right side of equation 3.20 is everywhere below the 45 degree line between
the two roots, and above the 45 degree line on either side of the roots (for
ρ < −b

βn2 ).
8 Therefore the graph must cut the 45 degree line from above

at ρ−. Figure 2 shows these characteristics. Consequently, it must be
the case that k′ (ρ∞) < 1, i.e. ρ− is a stable steady state. Examining the
dynamics of ρ, using the construction described in Chapter 1 (for the capital

8A straightforward calculation shows that h
(

−b
βn2

)
= c2 b2

n2 > 0. Therefore, the point

of discontinuity of g (ρ), −b
βn2 , lies to the right of ρ+.
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accumulation problem), we see that the sequence of ρs converges to ρ− for
any initial condition ρ1 < ρ+. In particular, the sequence converges for
ρ1 = a < 0.

There are two other ways to see that the negative root of the algebraic
Riccati equation is the correct root. The first alternative uses the fact that
a necessary condition for the solution to the dynamic programming equation
to be the correct solution to the infinite horizon optimization problem is
limt→∞EβtJ (xt) = 0. Some tedious calculation shows that if we substitute
the positive steady state ρ+ into the stationary version of the control rule,
equation 3.14, to obtain

u = −βρ+cn
x

b+ βρ+n2
,

the expectation of the controlled state is explosive. Moreover, it increases
at a sufficiently fast rate so that limt→∞EβtJ (xt) = −∞. Therefore, the
positive root does not satisfy a necessary condition for the solution of the
problem. By substituting the negative root into the stationary control rule,
the reader can confirm that the resulting controlled state converges and that
limt→∞EβtJ (xt) = 0, as required. Thus, the negative root is the correct
root.

An even simpler means of identifying the correct root notes that because
a < 0 and b < 0, the value of the program must be negative for all values
of x ̸= 0. However, with the positive root, ρ+, the value of the program is
positive for sufficiently large values of x. Therefore, the positive root is not
the correct root.

To complete the solution to the infinite horizon problem, we find the steady
state for ψt using equation 3.17. Solving the algebraic equation obtained
be removing the time subscripts in this difference equation, we obtain the
steady state

ψ =
1

2
βρ

σ2

1− β
,

which we evaluate at ρ = ρ−, the steady state of ρt.

Note that in the autonomous control problem, the value function does not
depend on calendar time or on time to go. For the autonomus problem, we
have J (x) = ψ + ρ

2
x2, where ψ and ρ are the steady states obtained above.
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In Chapter 1 we showed how to approximate the control rule for a general
problem (not LQ) in the neighborhood of a steady state. The material in
this chapter provides an alternative procedure. We can find the steady state
to the general problem and then take a second order approximation of the
single period payoff, evaluated at the steady steady state, and a first order
approximation of the equation of motion, evaluated at the steady state. We
then have a linear-quadratic approximation of the original general control
problem. We can apply the methods of this chapter to obtain the solution,
i.e. the control rule and the value function, to this linear quadratic problem.
That solution is an approximation to the solution of the original general
problem, where the approximation is evaluated at a steady state.

3.3 Two variations

This section consider two variations of the LQ control problem studied above.
The first variation allows the noise to be multiplicative and the second intro-
duces risk aversion. Both of these variations admit a closed form solution,
and in both cases the optimal control variable is a linear function of the state
variable. However, the Principle of Certainty Equivalence does not hold: the
optimal control rule is a function of the variance of the stochastic term.

3.3.1 Multiplicative noise

Suppose that we replace equation 3.9 with

xτ+1 = cxτ + n (1 + vτ )uτ

or
xτ+1 = c (1 + vτ )xτ + nuτ .

In both of these variations the noise enters multiplicatively rather than ad-
ditively.

This form of the problem is appropriate for describing the situation where
parameters of the state equation are random variables with known mean.
This form of the control problem also arises in a variation of the taxes versus
quotas problem with asymmetric information, in which the cost shock affects
the slope rather than the intercept of marginal abatement costs.
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It is still the case that the value function is quadratic and the control variable
linear in the state. However, the Principle of Certainty Equivalence no longer
holds. In particular, the optimal control rule, in addition to the value of the
program, depends on the variance of the random term.

3.3.2 Risk sensitivity

It is possible to introduce constant absolute risk aversion with respect to
the entire stream of payoffs into the model with additive uncertainty. In
this case, however, it is necessary to assume that the noise is Gaussian.
Previously we assumed only that the random variable has mean zero and a
finite variance The maximand in expression 3.8 is replaced by

maxEtϕ exp

[
T∑

τ=0

ϕ

2

(
ax2τ + bu2τ

2

)]

and the equation of motion remains equation 3.9. The constant ϕ determines
the level of risk sensitivity; ϕ < 0 implies that the regulator is risk averse
and ϕ > 0 implies risk preference. Note that this problem does not contain
a positive discount rate (i.e. β = 1).9 Even with constant discounting,
the solution to the problem with a positive discount rate leads to a time-
inconsistent control rule. We discuss time-inconsistency in Chapter xx.

This problem is called the “Linear quadratic exponential Gaussian” control
problem. The Principle of Certainty Equivalence does not hold. The
optimal control rule in this case depends both on the variance of noise and
on the level of risk aversion/preference ϕ. Variations of this problem include
the situation where the summand is linear rather than quadratic in x.

The problem has an interesting relation to a dynamic game. The solution to
the optimization problem is identical to the solution to the zero sum dynamic
game in which the DM chooses the control rule for u to maximize

T∑
τ=0

(
ax2τ + bu2τ + ϕσ2v2τ

2

)
9Remember the difference between a discount rate and a discount factor. If the interest

rate, or discount rate, for a single period is r then the discount factor for a period is
β = 1

1+r . A zero discount rate corresponds to a discount factor equal to 1.
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and nature chooses the control rule for v to minimize this expression.

Whittle [??] provides an early treatment of this optimization problem and
Jacobsen [??] provides further analysis. Applications of this control problem
in economics include several papers by Karp [1987, 1988, 1992] ( “Methods
for Selecting the Optimal Dynamic Hedge When Production is Stochastic.”
American Journal of Agricultural Economics, Vol. 69, No. 3 (1987) pp. 647
657; “Dynamic Hedging with Uncertain Production.” International Economic
Review, Vol. 29, No. 4 (1988) pp. 621 637; “The Endogenous Stability
of Economic Systems: The Case of Many Agents.” Journal of Economic
Dynamics and Control, Vol. 16 (1992) pp. 117-138.) and by Hansen and ??
[??]

3.4 Taxes versus quotas with stock pollutants

Here we study the question of ranking taxes and quotas when firms create
a stock pollutant. We begin by writing down the single period payoff,
which equals the difference between the benefit of emissions and the damage
resulting from the pollution stock; we then write down the equation of motion
for the stock. The objective of the problem is to maximize the expectation
of the present discounted value of the stream of net benefits (the benefits
from emissions minus the damages from the stock); the equation of motion
is the constraint.

This model differs from the LQ problem from Chapter 3.2 in one respect.
Here the random shock enters the payoff directly, and also enters the equation
of motion. In the LQ problem that we studied above, the random term enters
only the equation of motion. This difference leads to a minor modification
in the problem.

The benefit of emissions The dynamic model is a straightforward vari-
ation of the static model, but in the dynamic setting damages depend on a
stock rather than a flow. As above, abatement equals the difference between
the actual level of emissions and the Business as Usual (BAU) level. The
abatement costs are quadratic in abatement, so the benefit of emissions is a
quadratic function of emissions. Again, the intercept of the marginal ben-
efit function equals a constant a plus a mean-zero random variable θt with
a constant and known variance σ2. In the dynamic setting, time subscripts
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denote the fact that some variables, including the cost shock and the level
of emissions, change over time. The slope of marginal benefits is a known
constant b. In period t the firm, but not the regulator, knows the value of
θt. The benefit of emissions in period t is

f̃ + (a+ θt) et −
b

2
e2t . (3.22)

When the regulator sets a tax pt per unit of emissions, the firm maximizes
the benefit of emissions minus the cost of tax. It’s problem is

max
e
f̃ + (a+ θt) et −

b

2
e2t − ptet.

The first order condition to this problem implies that the level of emissions
is

e∗t =
a− pt
b

+
θt
b
≡ z

t
+
θt
b
. (3.23)

As above, we model the tax-setting regulator as choosing zt, the expected
level of emissions under a tax. Substituting e∗t into the firm’s benefit function
(3.22) and taking expectations, gives the expected benefit of emissions under
the tax policy zt:

f̃ + azt +
σ2

2b
− b

2
z2t . (3.24)

The quota-setting regulator chooses et, which by assumption is binding with
probability 1. Thus, the expected benefit of emissions under the quota policy
et is simply

f̃ + aet −
b

2
e2t . (3.25)

Exactly as in the static model, the tax-setting regulator determines only
the expected level of emissions, whereas the quota-setting regulator chooses
actual emissions.

Environmental damages Let St be the stock of pollutants, and et be
the flow of emissions in period t. All time dependent variables are constant
within a period. The fraction 0 ≤ ∆ ≤ 1 of the pollutant stock lasts into
the next period, so the growth equation for St is:

St+1 = ∆St + et. (3.26)
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With taxes, the flow of emissions and thus the next period pollutant stock,
St+1, is stochastic since it depends on the cost shock. With quotas, the
regulator is able to exactly determine the change in pollution stock.

The environmental damage in period t is

D(St) =
G

2

(
St − S̄

)2
. (3.27)

The single period payoff We continue to treat the regulator’s decision
variable under taxes as z, the expected level of emissions given a tax of p. In
an attempt to reduce notational complexity, and to emphasize the similarity
of the problems under taxes and quotas, we hereafter replace the quota e with
z. The reader must keep in mind the context in which we use this variable.
Under taxes, if the regulator chooses z, actual emissions are z+ θt

b
, a random

variable. Under quotas, if the regulator chooses z, actual emissions are z,
which is not random.

The expected payoff in a period equals the expected benefits of emissions
minus the damages. The expectation is taken with respect to the cost
shock, θ. Under taxes, where emissions are given by equation (3.23), the
expected single period payoff is

f + azt −
bz2t
2

+
σ2

2b
− cSt −

G

2
S2
t (3.28)

with f ≡ f̃ − G

2
S̄2, c ≡ −GS.

In view of the notational change described above, we write the expected
single period payoff under quotas as

f + azt −
bz2t
2

− cSt −
G

2
S2
t . (3.29)

(Prior to the notational change, the expression 3.29 would have the argument
e rather than z.) The presence of the term σ2

2b
in the expected single period

payoff under taxes and its absence under quotas reflects the fact that with
taxes the firm can adjust to the cost shock – a possibility not available under
quotas. Thus, for the same expected level of emissions, the expected payoff
is higher under taxes.



3.4 Taxes versus quotas with stock pollutants 74

Comparison between the static and the dynamic problems We
noted that in the static problem, the units of b and G are the same, so
a direct comparison of the two parameters is sensible. The units of these
parameters differ in the dynamic setting, so it is no surprise that the ranking
of policies cannot depend merely on a comparison of their magnitudes.

Some economists claim that it is “obvious” from conventional parameter
estimates that taxes dominate quotas for the control of greenhouse gasses,
because most estimates suggest that the marginal damage function is quite
flat, i.e. G is small relative to b. This observation contains useful intuition,
but the fact that the two parameters do not even have the same units means
that the intuition cannot possibly be exactly correct. We have to solve the
dynamic problem in order to know how to use the slopes to compare the two
policies.

We continue to measure costs and damages in dollars, as in the static setting,
and here we measure the pollution stock in tons. Emissions in the dynamic
problem are flow. If we choose a unit of time to be a year, then the units of
e are tons

year
. Because the units of GS2 and be2 are both dollars, the units of

G and b are

units of G:
dollars

(tons)2

and

units of b:
dollars(
tons
year

)2 =
dollars times year2

(tons)2
.

In the dynamic problem, the units of b and G are not the same. Hoel and
Karp (2002) show that the comparison of taxes and quotas depend on the
length of a period, a parameter they denote as h. We ignore that complica-
tion here, setting h = 1 and suppressing the parameter.

The dynamic optimization problems The dynamic problems under
taxes and under quotas have only two differences. First, the expected single
period payoff under taxes has the positive term σ2

2b
. Given an infinite horizon

and a constant discount factor, this term contributes σ2

2b(1−β)
to the present

discounted value of the expected payoff under taxes, an amount absent from
the problem with taxes. This term is the source of the advantage of taxes.
However, under quotas the equation of motion is St+1 = ∆St + zt, in view of
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equation 3.26. Under taxes, the equation of motion is St+1 = ∆St + zt +
θt
b
.

The regulator chooses the actual future stock under quotas, but chooses only
the expectation of future stock under taxes. This difference is the source of
the advantage of quotas. Ranking of the two policies depends on the relative
magnitudes of these two effects.

With a discount factor β, the tax-setting regulator’s maximized expected
payoff at time t = 0 is

J tax (S0) = maxE0

∞∑
τ=0

βτ

{
f + azτ −

bz2τ
2

+
θ2τ
2b

− cSτ −
G

2
S2
τ

}
. (3.30)

The dynamic programming equation is:

J tax (St) = maxz Eθt

{
f + az − bz2

2
+

θ2t
2b
− cSt − G

2
S2
t + βJ tax (St+1)

}
= maxz

{
f + az − bz2

2
+ σ2

2b
− cSt − G

2
S2
t + EθtβJ

tax (St+1)
}

subject to St+1 = ∆St + z + θt
b
.

(3.31)
In this problem, the random shock enters both the single period payoff and

the equation of motion. We used Eθt
θ2t
2b

= σ2

2b
to move the expectations oper-

ator past the current period payoff. The “tax” superscript on the function
J denotes the value function under taxes.

The single period expected payoff under taxes contains the term σ2

2b
, absent

from the expected payoff under quotas. This contant term affects the value
of the program, but it does not affect the optimal control rule. The other
difference between the problems under taxes and quotas is that the equation
of motion contains the random shock θt

b
under taxes, whereas the equation

of motion is deterministic under quotas. By the Principle of Certainty
Equivalence, we know that the control rule under taxes is independent of σ2

(and all higher moments). Therefore, the control rule is the same under
taxes and under quotas. Recall that the random term in the equation of
motion under taxes does affect the value of the program under taxes.

Therefore, there are two differences between the problems under taxes and
under quotas: under taxes the variance enters the single period payoff di-
rectly, and it also affects the value of the program via the randomness of the
equation of motion. The problem under taxes is more general than the prob-
lem under quotas, in the sense that we obtain the latter from the former by



3.4 Taxes versus quotas with stock pollutants 76

setting σ2 = 0. This observation means that we need only solve the problem
under taxes. In the resulting value function, we set σ2 = 0 to obtain the
value function under quotas. We already know that the control rules are the
same under the two problems, because of the Principle of Certainty Equiv-
alence. For completeness, we show the DPE under quotas, even though we
do not need to solve this problem; we obtain the solution merely by setting
σ2 = 0 in the solution to the problem under taxes. The DPE under quotas
is

Jquota (St) = maxz

{
f + az − bz2

2
− cSt − G

2
S2
t + βJquota (St+1)

}
subject to St+1 = ∆St + z.

(3.32)

The superscript “quota” denotes the value function under quotas.

The fact that the control rules are the same under the two policies means
that given the same level of S, the expected level of emissions under taxes
equals the level of the (binding) quota. However, the fact that S is stochastic
under taxes and deterministic under quotas means that the trajectory for S
under the two types of policies will in general differ; therefore the realized
trajectory (as distinct from the expected trajectory) of the quota and the
expected emissions under taxes also differ. At the initial period, however,
the level of S is given, and it is the same under taxes and under quotas.
Therefore, in expectation the trajectories under taxes and quotas are the
same.

It is worth pausing to repeat the two differences between taxes and quotas.
Taxes tend to increase the expected value of the program because in each
period the firm can take advantage of its private information. Under taxes,
emissions and marginal abatement costs are positively correlated. This
flexibility increases expected cost saving, favoring taxes. In expectation,
this ability is worth σ2

2b
in each period. However, taxes result in a stochastic

stock of pollution. In view of Jensen’s Inequality, stochastic stocks increase
expected damages because damages are convex in stocks. This stochasticity
favors quotas.

We can now apply the results of Section 3.2 to obtain the solution under
taxes, and then by setting σ2 = 0 we obtain the solution under quotas. The
only modification we need is that here the single period payoff contains both
a constant, f + σ2

2b
, and a term that is linear in z and S, az − cS . Remark
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6 discussed this complication; it means that we have an extra term, linear in
S, γS, in the value function, and we have an intercept in the optimal control
rule (i.e. the control rule is linear rather than affine in the state). The value
function under taxes has the form

J tax(S) = ψ + γS + ρ
S2

2
.

We calculate the values of ψ, γ, and ρ following the same recipe as in Section
3.2. Problem 2 asks the reader to perform this calculation.

The algebraic equations that determine ψ, γ, and ρ are recursive. The
equation for ρ is an algebraic Riccati equation; it does not involve ψ or γ.
The equation for γ involves ρ but not ψ, and the equation for ψ involves
both ρ and γ. In addition, the equation for ψ depends on σ2 but both γ
and ρ are independent of σ2. (Problem 2 asks the student to verify these
claims.) Consequently, the values of γ and ρ are the same under taxes and
quotas. We already noted that the decision rules are the same under the
two policies.

Therefore, for given S, the difference in expected payoffs under taxes and
quotas depends only on the difference in the values of ψ. The sign of the
difference depends on the relative magnitudes of b and G, and also on the
parameters ∆ and β (and on the length of the time period, which we set
equal to 1). The fact that ψ but not γ or ρ depend on σ2 means that the
policy ranking does not depend on the level of the stock, S.

Variations and results The dynamic model above considers the “feed-
back” solution, where the regulator understands that all future policies are
conditioned on information available at the current time. In the “open-loop”
solution, the regulator acts as if she is able to choose, today, values of all fu-
ture policies. In this setting, where there are no strategic considerations,
there is no advantage to this kind of commitment, so the feedback equilibrium
provides a (weakly) higher expected payoff. Under quotas, where the stock is
deterministic, the open-loop and feedback solutions are identical. However,
under taxes, where the stock evolves stochastically, the two solutions differ.
Under taxes, the payoff under the feedback solution is strictly higher than
under the open-loop solution. The regulator obviously does better under
taxes if she can condition the time t tax on the time t value of the pollution
stock, rather than conditioning this tax on the expectation at time 0 of time
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t pollution stock. The open-loop equilibrium is implausible in a dynamic
setting (unless stochastics are absent, as under quotas), but the open-loop
model is useful because in some cases it leads to simpler results.

Hoel and Karp (2002) show that in the open-loop equilibrium taxes lead to
higher expected welfare than quotas if and only if

G

b
<

1− β∆2

βh2

where h is the length of a period (suppressed in the discussion above). In
the feedback equilibrium, taxes dominate quotas if and only if

G

b
<

1− β∆2

βh2

(
2− β∆2

2 (1− β∆2)

)
.

The right sides of both of these inequalities are decreasing in the discount
factor β and the persistence parameter ∆. Thus, a greater concern for future
damages (higher β) or a more persistent stock (higher ∆) decrease the critical
ratio, and in that respect make it “more likely” that quotas are preferred to
tax. (By saying that a change makes an event “more likely” we mean that
the change increases the set of parameter space over which this event occurs.)
We noted above that the advantage of quotas is that they reduce expected
damages; recall Jensen’s Inequality, the fact that damages are convex in the
stock, and the fact that the stock is stochastic with taxes and deterministic
with quotas. An increase in β or ∆ both increase the importance of future
damages, thus favoring quotas.

The fact that 2−β∆2

2(1−β∆2)
> 1 means that taxes are more likely to be preferred

to quotas under the feedback relative to the open-loop setting. This result is
obvious because we saw that the payoff under quotas is the same under the
feedback and the open-loop policies, but the payoff under the tax is strictly
higher under the feedback policy. The formulae above also show that a
shorter length of time between decisions (smaller h) favors taxes.

Newell and Pizer, JEEM 2003, allow the cost shock to follow an AR(1)
process, i.e.

θt = αθt−1 + vt, νt ∼ iid.

They obtain the criteria for policy ranking when the regulator uses an open-
loop policy. The open loop assumption is particularly unrealistic when cost
shocks are serially correlated, because the regulator’s knowledge about the
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previous level of θ, gained by observing firms’ response to the previous tax,
provides useful information about the current cost shock. The open-loop as-
sumption means that the regulator discards that information. However, the
open-loop assumption leads to simple comparative statics, and in particular
shows that positive correlation promotes the use of quotas.

Karp and Zhang (2005) consider serially correlated cost shocks under both
open-loop and feedback policies. They show that the direction of the com-
parative statics is the same under the feedback policy: positive correlation of
shocks favors quotas. However, numerical simulations show that the magni-
tude of the effect is much smaller in the feedback, compared to the open-loop
setting. The change in the stock over several periods approximately equals
the sum of flows during that time. (A positive decay rate means that the
stock change does not exactly equal the sum of flows.) Recall that under
taxes, emissions and cost shocks are negatively correlated. Thus, if cost
shocks are negatively autocorrelated (α < 0), then emissions are also neg-
atively autocorrelated. Other things equal, the variation in the stock is
smaller when the flows are negatively autocorrelated – as occurs under taxes
when costs are negatively correlated. Thus, negative autocorrelation of costs
reduces the characteristic (stochasticity of stocks) that tends to make taxes
unattractive. Similarly, positive autocorrelation of costs increases the char-
acteristic that tends to make taxes unattractive. This relation – “the stock
correlation effect” – explains why the preference for quotas is monotonically
increasing in ρ under an open-loop policy. In most economic settings it ap-
pears more likely that costs shocks are positively correlated, so this feature
tends to promote quotas.

The stock correlation effect exists but is less important under the feedback
tax policy, because the regulator is able to adjust the policy in every period
to accommodate the previous shock. In choosing the current tax she need
only consider next-period stock variability. All of these papers find that
taxes are likely to dominate quotas for plausible parameter estimates.

Hoel and Karp, J Pub Econ 2001 consider the case where there is asymmetric
information about the slope rather than the intercept of the firm’s marginal
cost. In this case, the results of Section 3.3.1 apply. The Principle of
Certainty Equivalence does not hold. The control rules under taxes and
quotas are different, and the expected level of emissions under taxes does
not equal the level of emissions under quotas, for given stock S. Therefore,
the expected trajectories of the stock are not equal under the two policies.
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In addition, the ranking of taxes and quotas in general depends on the level
of S. The comparison of policies is therefore much more complicated when
the slope rather than the intercept of marginal costs is random. It also
appears easier to find plausible parameter values for which quotas dominate
taxes.

3.5 Dynamic investment decisions

[To be completed] The models above assume that firms’ only decision is emis-
sions. Firms solve a sequence of static optimization problems under taxes,
and they merely carry out orders under quotas. This section discusses a
model in which firms make dynamic investment decisions that affect future
abatement costs. Firms are non-strategic but they have rational expecta-
tions, so their current equilibrium investment depends on their beliefs about
the level and type of future environmental policy. In this case, the compar-
ison of taxes and quotas is much more complicated.

3.6 Further discussion

We close by discussing several other views of the relative efficiency of taxes
and quotas. One view is that the risk of extreme environmental damages,
associated with high GHG stocks, means that over some range damages
are likely to be very convex in stocks, i.e. the slope of marginal damages
is actually very large. In addition, over a long enough time span, given
the opportunities for the development and adoption of new technologies,
the marginal abatement cost curve is actually rather flat. Based on these
observations, and reasoning from the standard static model, Dietz and Stern
(2007) conclude that quantity restrictions are more efficient than taxes for
climate policy.

There are three reasons for doubting this conclusion. First, the use of the
static framework (or the open loop assumption in a dynamic setting) is not
appropriate for studying climate policy, because the current policymaker can-
not choose policy levels decades into the future. More rapid adjustment of
policy, i.e. a decrease in the length of period between policy adjustments, fa-
vors the use of taxes. Second, even if the possibility of extreme events makes
the marginal damage function much steeper than current estimates suggest,
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the magnitude of the slope of damages would have to be implausibly large
to favor quotas. Third, the model in Section 3.5 suggests that endogenous
investment in abatement capital is likely to increase the advantage of taxes,
given the linear quadratic framework.

A second view is that the existing models inaccurately describe the abate-
ment problem and are therefore simply inappropriate for comparing policies.
The objection is that firms will first undertake the cheapest abatement op-
portunities, which will not be available in the future. There are (at least)
two ways to respond to this objection. First, a stationary upward slop-
ing marginal abatement cost curve (used in most previous analyses) is ob-
viously consistent with the claim that firms first use the cheapest way of
reducing emissions, and then use more expensive means when regulation be-
comes stricter. However, because abatement is a flow decision, the fact that
the cheap abatement opportunities were used early in the program does not
mean that they are unavailable later in the program. The firms move up
their marginal abatement curves as the policy becomes stricter. A second
response interprets the objection as a call to use a model in which abatement
is a stock rather than a flow decision – specifically, a model with endogenous
investment in abatement capital, in which there is a sequence of increasingly
expensive technologies that reduce emissions. It would be fairly straightfor-
ward to produce that kind of model, using a slight modification of the model
in Section 3.5. That model assumes that the cost of investment is a function
of gross investment. To address the objection, we could create a model of
investment cost for which the cost of an additional unit of capital increases
with the current level of capital. With this formulation, the firms’s level of
capital is a proxy for it’s stage of technology. Because it first adopts the
cheapest (most efficient) technologies, it becomes increasingly expensive to
make further reductions in abatement costs. It is not clear how this change
affects the policy ranking, but it would require a fairly simple variation to
the model in Section 3.5.

There are several other model variations that would address other interesting
questions. For example, network externalities may cause the productivity
of a firm’s capital to increase with the level of aggregate capital. There
may be intra-firm increasing returns to scale. There might also be learning
by doing, so that an increase in cumulative abatement decreases abatement
costs. The inclusion of intertemporal trade (banking and borrowing) under
quantity restrictions is also potentially interesting. Because GHGs are a
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stock pollutant, the stream of damages can be sensitive to the cumulative
emissions over a long period of time without being sensitive to the precise
timing of emissions. Intertemporal trading allows firms to optimally allocate
over time a given cumulative level of emissions. The introduction of bank-
ing and borrowing (under the quantity restriction) would likely significantly
erode the advantage of taxes. The effect of banking and borrowing on the
incentive to invest is not clear.
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3.7 Problem set

The purpose of problem 1 is to give the student practice in working with
the static model. The purpose of the next two problems is to give students
practice in solving two versions of the linear-quadratic control problem, the
first with additive and the second with multiplicative disturbances. This
exercise develops mechanical skills and helps to reinforce understanding of
the Principle of Certainty Equivalence.

Students are encouraged to tackle these problems using a program for sym-
bolic calculations, such as MuPad (with ScientificWorkplace) or Maple or
Mathematica. The time needed to learn how to use one of these programs
well enough to do this problem set is probably less than the time needed to
do the problem set ”by hand”.

1. (a) For the static model in Section 3.1, compare the magnitudes of the
variance of average tax inclusive abatement costs (under the tax) and
under the quota. (b) Now consider the case where θ ∼ N (0, σ2).

2. (Hoel and Karp 2001, Taxes versus Quotas for a Stock Pollutant) Equa-
tion 16 in Appendix A is the Dynamic Programming equation for the
stock pollution problem with additive errors. There is a typo above
equation 16. The expression for λ should be

λ = f + az − bz2

2
+
σ2

2b
− cS − gS2

2
.

Using the algorithm in described in Section 3.2, solve the dynamic
programming equation for this problem. The solution requires that you
find the control rule and the unknown parametersρ0, ρ1, ρ2. The paper
contains the expressions for ρ0 and ρ2 so you need only confirm these
equations and find the expression for ρ1, and figure out the relation
between these coefficients and the optimal control rule. (The optimal
control rule is a linear function of the state. The coefficients of this
linear function depend on ρi.)

3. (Hoel and Karp 2000, Taxes and Quotas for a Stock Pollutant with Mul-
tiplicative Uncertainty) Equation 20 in section 5.1 is the Dynamic Pro-
gramming Equation for a linear-quadratic control problem with multi-
plicative errors. Confirm that the control rule equals the expression
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in equation (21) (equivalently, equation (6)), and that the unknown
parametersρ0, ρ1, ρ2 solve equations (7) - (9). (This paper was pub-
lished in J Pub Econ in 2001, but the published version contains typos
in a couple of equations, so you should use the link to the paper beneath
this problem set link.)

Note that the stochastic term plays a fundamentally different role in the
problem with multiplicative rather than additive shocks. In particular,
the control rule depends on the variance, and the effect of the variance
(on the value of the program) depends on the state. In this problem,
the Principle of Certainty Equivalence does not hold.
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4 Reactions to Risk in a Simple Resource Ex-

ploitation Model

This chapter defines the meaning of an increase or decrease in risk, and it
shows how to analyze the effect of a change in risk on optimal decisions. We
also define and explain the role of “prudence”.

4.1 A Simple Model

We discuss risk in the context of a three-period model. One interpretation
of this model is that a social planner maximizes the welfare obtained from
consuming an exhaustible resource. The per period welfare obtained from
consuming xt units of the resource in period t ∈ 1, 2, 3 is u(xt), with u′ >
0, u′′ < 0. In the first period, i.e. at t = 1, the planner does not know
the total stock of the resource. We model the stock as a random variable θ̃
with non-degenerate support, e.g. continuous support [θ, θ] with θ < θ, or
discrete support {θ1, ..., θN} with N > 1. It is optimal to consume all of the
remaining resource stock in the last period. Therefore, we can write overall
welfare ( a random variable) as

v(x1, x2, θ̃) = u(x1) + u(x2) + u(θ̃ − x1 − x2) . (4.1)

In order to focus on uncertainty and learning we ignore discounting.

We can also interpret equation (4.1) as a two-period stock pollutant model,
e.g. for greenhouse gas (GHG) emissions. With this interpretation, u(x1)
denotes welfare derived from emissions in the current period – that is from
the underlying consumption to which the emissions are tied – and u(x2)
denotes welfare derived from emissions in the future. The adverse effect of
the GHGs is negligible (or neglected) in the current period, but emissions
create the GHG stock x1 + x2 in the future where they cause the damage
−u(θ̃ − x1 − x2).

With the stock pollutant interpretation, we can write the objective as

v(x1, x2, θ̃) = u(x1) + u(x2)−D(θ̃, x1, x2)

with the damage function D(θ̃, x1, x2) = −u(θ̃−x1−x2), satisfying D′, D′′ >
0. We can think of this model as representing a two-phase simplification of
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an infinite time horizon model with discounting. Let the current period be
[0, T ] and ‘the future’ be [T,∞]. The decision maker plans to consume x1
in the first phase, i.e. for all t ∈ [0, T ], and x2 from there on, i.e. for all t ∈
[T,∞]. The benefits from emissions are

∫∞
0
u(xt)e

−ρtdt =
∫ T

0
u(x1)e

−ρtdt +∫∞
T
e−ρtu(x2)dt = u(x1)

∫ T

0
e−ρtdt + u(x2)

∫∞
T
e−ρtdt. A simple calculation

(
∫ T

0
e−ρtdt

!
=
∫∞
T
e−ρtdt) shows that u(x1) and u(x2) obtain equal weights (as

in equation 4.1) if T = ln 2
ρ
. For a pure rate of time preference ρ = .03 we

find T = 23. With this interpetation, the planner emits level x1 for the first
23 years without seeing much damage from GHG emissions. Around year 23
the damage sets in and she changes emissions to level x2.

For the resource extraction interpretation of the model we have to assume
that x1+x2 < θ for all possible realizations of θ̃: we cannot extract a resource
that has not yet been discovered and might not exist. We assume that the
utility function u and the distribution of θ̃ are such that the optimal choices
of x1 and x2 are interior solutions so that we can ignore this constraint. Given
particular functional forms we can check that this assumption holds. For the
GHG emission interpretation of the model such a restriction is not needed
because θ̃ only denotes the distribution of some damage parameter.

Our goal is to determine how the fact that the future resource stock (or
damage) is uncertain changes the decision maker’s welfare and consumption
plan. With uncertainty she maximizes the expression

max
x1

max
x2

E v(x1, x2, θ̃)

= max
x1

max
x2

u(x1) + u(x2) + Eu(θ̃ − x1 − x2) .

Without uncertainty, assuming that θ = Eθ̃, she maximizes

max
x1

max
x2

v(x1, x2,E θ̃)

= max
x1

max
x2

u(x1) + u(x2) + u(E θ̃ − x1 − x2)

instead. We first consider the effect of uncertainty on welfare. To this end,
we recall Jensen’s inequality, which is the basis for many results involving
risk aversion and decision-making under uncertainty. This inequality states
that for any concave function ϕ

Eϕ(θ̃) ≤ ϕ(E θ̃) .
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The concavity of u implies that the introduction of risk reduces welfare: the
value of E v(x1, x2, θ̃) is less than the value of v(x1, x2,E θ̃), for all values of
x1 and x2. Of course, the optimal levels of x1 and x2, generally differ across
the two scenarios. Let xu1 and xu2 denote the optimal consumption levels for
the uncertain scenario and xc1 and x

c
2 denote the optimal consumption levels

in the certain scenario. Then we have

E v(xu1 , x
u
2 , θ̃) ≤ v(xu1 , x

u
2 ,E θ̃) ≤ v(xc1, x

c
2E θ̃) ,

where the first inequality follows from Jensen’s Inequality and the second
from the fact that xu1 and xu2 are feasible in the certain scenario but may not
be optimal. Therefore, if the decision maker chooses xc1 and xc2 instead they
must yield at least as much welfare. Thus, the introduction of uncertainty
reduces overall (ex-ante) welfare.

4.2 Defining a reduction or increase in risk

This section explains what is meant by ‘reducing or increasing risk’. The first
formal model we discussed in section ?? illustrates the willingness to pay in
order to reduce the risk of a health condition. Section 4.1 introduces risk
over a resource stock or a damage parameter and compares the setting to one
without uncertainty. Both models deal with a risk reduction or elimination.
However, the reduction of risk has different meanings in the two models.

In a model with a binary outcome, x and x−L, where L is the loss following a
bad outcome, a change of the probability p of the event has two implications.
First – assuming that p < 1

2
– reducing the probability p of the event decreases

the variance of the distribution of outcomes: σ2 = L2p(1−p) is single peaked
and has its maximum in at p = 1

2
. Second, reducing p also increases the

expected value of the outcome, µ = x−pL. Hence, in this model a reduction
in p both reduces the variance and increases the expectation of the outcome.

In the resource extraction or GHG emission model we compared the risky
setting with a setting under certainty by exchanging the random stock (re-
spectively damage parameter) with its expected value. There we kept the
expected value of the random variable constant. The variance of a random
variable may appear to be a good measure of risk, because setting the vari-
ance to 0 eliminates risk without changing the expected value. Although
the variance is an adequate proxy if we are interested only in the effect of
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eliminating risk, it is an inadequate measure for discussions of more general
changes in risk. In particular, a risk averse decision maker (i.e. one with
a concave utility function) might prefer a probability distribution with the
same mean and a higher variance.

? provided the now widely accepted definition of ‘increasing risk’. Their
definition corresponds to the following three statements, which they prove to
be equivalent:10

Definition: A random variable Ỹ is more risky than a random variable X̃
with the same mean if and only if either of the following equivalent
statements holds:

• Every risk averse expected utility maximizer prefers X̃ to Ỹ , i.e.
Eu(X̃) > Eu(Ỹ ) for all u concave.

• Ỹ equals X̃ plus some noise. More precisely, Ỹ has the same distri-
bution as X̃ + Z̃ for some Z̃ satisfying E(Z̃|X̃) = 0 (uncorrelated
noise).11

• Ỹ has more weight in the tails than X̃.

In particular, these conditions are met by a mean preserving spread which
is characterized by the second bullet point. Today, this notion of increas-
ing risk aversion is also known as second order stochastic dominance: the
(less risky) random variable X̃ in Definition 1 stochastically dominates the
random variable Ỹ . First order stochastic dominance is a statement about
higher or lower payoff in a stochastic setting. A random variable Ã first order
stochastically dominates a random variable B̃ if every decision maker with
a monotonically increasing utility function prefers lottery Ã over lottery B̃.
Equivalently, the random variable Ã first order stochastically dominates the
random variable B̃ if the cumulative distribution function characterizing Ã
takes on smaller values than the cumulative distribution function character-
izing B̃ at all consumption levels.

10? prove the equivalence result and argue that the statements correspond to a well
defined notion of increasing risk. They do not actually define ‘more risky’.

11E(Z̃|X̃) is again a random variable as we only take expectation over Z̃. The statement
means that the expected value of Z̃ is zero for all realizations of X̃, i.e. E(Z̃|X̃ = xi) = 0∀ i.
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4.3 Reaction to Risk

We now return to the model of resource extraction, or of GHG emissions
under uncertainty. Here we consider the case where the decision maker does
not have the opportunity to insure against risk. We want to examine the
effect, on the first period decision, of an increase in risk.

The first order conditions for the agent facing uncertainty are

u′(x1) = u′(x2) = Eu′(θ̃ − x1 − x2) , (4.2)

and the conditions for the agent who knows (or act as if) θ̃ takes on the value
Eθ with certainty are

u′(x1) = u′(x2) = u′(E θ̃ − x1 − x2) . (4.3)

Denote the solutions of equation (4.2) by xu1 and xu2 and the solutions of
equation (4.3) by xc1 and xc2. We assume that the second order conditions
are satisfied.

Inspection of equations (4.2) and (4.3) shows that the only difference be-
tween them is that in the first equation the expectation operator is outside
the marginal utility function while for the second equation it is inside that
function. This observation should bring to mind Jensen’s Inequality. We first
consider the case where marginal utility u′ is strictly convex. Here Jensen’s
Inequality implies that

Eu′(θ̃ − xc1 − xc2) > u′(E θ̃ − xc1 − xc2) (4.4)

for any non-degenerate probability distribution of θ̃ (that is any probability
distribution that does not concentrate all the weight on a single point – which
would correspond to certainty). Together with equation (4.3) we find

Eu′(θ̃ − xc1 − xc2) > u′(xc1) = u′(xc2) .

The only way to satisfy the first order conditions for the decision maker facing
uncertainty (equation 4.2) is therefore to lower x1 and x2 compared to the
optimal values xc1 and xc2 for the decision maker facing no uncertainty; this
conclusion uses the fact that marginal utility is decreasing in consumption.
In words, the marginal utility in the first period at the xc level is relatively
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Figure 1 Reaction to Risk.

too low and we can increase overall welfare by decreasing first period welfare
(increasing marginal welfare) and increasing second period consumption.

A graphical treatment illustrates the roles of both Jensen’s Inequality and
the second order condition in obtaining the conclusion that the introduction
of uncertainty decreases first and second period consumption when marginal
utility is convex, i.e. for xu1 < xc1. Using the first part of equation (4.2) to
write x1 = x2 = x, we can write the second part of the equation as

u′(x)− Eu′(θ̃ − 2x) = 0 . (4.5)

The solid curve in Figure 1 shows the graph of the left side of equation (4.5).
The curve decreases in x due to the second order condition. The intersection
of the curve and the x axis shows the optimal level of first and second period
consumption, xu. Similarly, we can write equation (4.3) as

u′(x)− u′(E θ̃ − 2x) = 0 .

By the second order condition, the graph of the left side of this equality
(the dashed curve in Figure 1) is also downward sloping, and by equation
(4.4) this graph lies above the solid graph. Therefore, the intersection of the
dashed graph and the x axis, shown as xc, is greater than xu.

Analogous reasoning shows that the introduction of uncertainty increases
initial consumption if and only if marginal utility is concave. For a utility
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function that is three times differentiable these conditions are equivalent to
u′′′ > 0 for the case of convex marginal utility and decreasing initial consump-
tion, and to u′′′ < 0 for the case of concave marginal utility and increasing
initial consumption. Because a decision maker with u′′′ > 0 reduces con-
sumption in the face of uncertainty this condition is also known as prudence.

4.4 A characterization of prudence

The following axiomatic characterization of prudence, i.e. the convexity of
marginal utility, helps to understand the concept. Assume that the preference
relation ⪰ over consumption or wealth x has an expected utility representa-
tion with a three times differentiable utility function satisfying u′ > 0 and
u′′ < 0. Let k > 0 be a sure loss (of consumption or wealth) and let ϵ̃ be a
random variable with E ϵ̃ = 0. A decision maker is said to be prudent, i.e.
u′′′ > 0, if and only if(

1

2
, x− k ;

1

2
, x+ ϵ̃

)
⪰
(
1

2
, x ;

1

2
, x− k + ϵ̃

)
(4.6)

for all k > 0, x, ϵ̃. The meaning of the brackets is “(probability 1, outcome
1;probability 2, outcome 2)”. That is, on the left we have a lottery that yields
with probability 1

2
the outcome x− k (a sure loss) and with probability 1

2
it

yields x+ ϵ̃. This lottery is preferred (⪰) to a lottery that yields, with equal
probability, x or x − k + ϵ̃. We can also write these lotteries as probability
trees. Then condition (4.6) becomes

�
��

Q
QQ

1
2

1
2

x+ ϵ̃

x− k

x

x− k + ϵ̃

⪰ �
��

Q
QQ

1
2

1
2

for all ϵ̃, k > 0, x.

The sure loss k and the randomness of ϵ both harm the risk averse decision
maker. A prudent decision maker prefers to have one harm (determined by
the lottery) with certainty rather than facing a lottery that causes either
no harm or both harms at the same time. The two harms are ‘mutually
aggravating’ to the decision maker.
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Another way to interpret prudence is that the decision maker prefers to face
the random term ϵ at the higher consumption level rather than the lower
consumption level. This idea is linked to a point discussed in section 4.7,
the fact that risk aversion might change in wealth. See e.g. ? for details
and for similar characterizations of (all) higher order derivatives of the utility
function. Also, combine equation (4.2) with Jensen’s Inequality to find that,
indeed, an optimal allocation plan under uncertainty shifts consumption from
the first two periods to the third so that risk strikes the agent at a higher
welfare level, where it does less harm to a prudent agent.

4.5 Reaction to Increasing Risk∗

We now consider the more general case: the agent begins with some risk
over the resource stock or the damage parameter and then experiences an
increase or decrease in risk. The equivalence of the various expressions of
(?) definition of increasing risk makes this generalization a straightforward
exercise that follows almost line by line the reasoning in section 4.3.

We introduce a new random variable θ̃∗ and assume that θ̃ is more risky than
θ̃∗. That is, we assume that θ̃ is equivalent to θ̃∗ plus some (uncorrelated)
noise or – equivalently – that θ̃ has more weight in the tails than θ̃∗. The
first order conditions for the θ̃∗ scenario are analogous to those for θ̃:

u′(x1) = u′(x2) = Eu′(θ̃∗ − x1 − x2). (4.7)

To conserve notation we denote the solutions of the more risky θ̃ scenario
(equation 4.2) by xu1 and xu2 and those of the less risky θ̃∗ scenario (equation
4.7) by xc1 and xc2.

For u′ weakly concave (rather than strictly convex), equation (4.4) is replaced
by

Eu′(θ̃ − xc1 − xc2) ≤ Eu′(θ̃∗ − xc1 − xc2) .

It is worth emphasizing that here the inequality is not a consequence of
Jensen’s Inequality, but because of (?) proof that more weight in the tails
(or more noise) is equivalent to the fact that E v(θ̃) < E v(θ̃∗) for all v
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concave.12 Here we set v = u′. Together with equation (4.7) we obtain

Eu′(θ̃ − xc1 − xc2) ≤ (u′(xc1) + u′(xc2)) .

The rest of the proof is exactly the same as in section 4.3, except that here
the inequality is reversed because of our assumption that marginal utility is
concave. The only way the decision maker facing the θ̃ scenario can satisfy
his first order condition (equation 4.2) is to raise x1 and x2 relative to the
optimal choices xc1 and xc2 of the decision maker facing the θ̃∗ scenario.

Thus, increasing risk in the sense of ? has the same effect as does introducing
risk to a risk-free environment. A decision maker with a concave marginal
utility function (u′′′ < 0) increases her first (and second) period consumption
when uncertainty increases. Again, the analogous reasoning implies greater
risk reduces initial consumption if and only if marginal utility is convex
(u′′′ > 0).13 Obviously, if we move from the θ̃ scenario to the θ̃∗ scenario
we have a decrease in risk and the opposite reactions of the decision maker.

4.6 Insurance against Risk

Because uncertainty reduces welfare, the decision maker is willing to pay an
insurance premium w > 0 to eliminate the risk. Assuming that the decision
maker pays for the insurance in period 1 in units of x1 she is willing to pay
w to eliminate the risk provided that

max
x1,x2

u(x1 − w) + u(x2) + u(E θ̃ − x1 − x2) (4.8)

!

≥ max
x1,x2

u(x1) + u(x2) + Eu(θ̃ − x1 − x2) .

The first order conditions for the second maximization problem, desscribing
the scenario with uncertainty, are

u′(x1) = u′(x2) = Eu′(θ̃ − x1 − x2) . (4.9)

12Subtracting a constant from both random variables does not alter the fact that they
have the same mean and that the random variable obtained by adding noise has more
weight in the tails.

13Reversing (?) inequality is not as straightforward as in the case of Jensen’s Inequality.
The intuition is that if every risk averse decision maker prefers the less risky scenario over
the more risky scenario, then every risk loving decision maker prefers the more risky
scenario over the less risky one (given that both have the same expected value).
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In the first maximization problem there is no uncertainty but the decision
maker pays the insurance premium. The first order conditions are

u′(x1 − w) = u′(x2) = u′(E θ̃ − x1 − x2) . (4.10)

For a given utility function and a given probability distribution over θ̃ we
can solve equation (4.9) for x1 and x2 and plug the values back into the
overall welfare function to find the maximal (ex-ante) welfare that can be
attained under uncertainty. In general, the calculation has to be performed
numerically. We can calculate x1 and x2 in the insurance case as functions
of w from equation (4.10) and find the maximized welfare given the insur-
ance premium w by plugging these functions back into the welfare function.
Requiring equality in equation (4.8) and solving for w gives the maximimum
premium the decision maker will pay to eliminate the risk.

4.7 Common functional forms∗

This subsection discusses common functional forms used to characterize util-
ity and, thus, capture risk aversion. The function

u(x) =
1− e−αx

α
(4.11)

gives rise to a constant coefficient of absolute risk aversion

A(x) ≡ −u
′′(x)

u′(x)
= α .

This functional form is generally referred to as CARA utility.

It is widely believed that the degree of absolute risk aversion decreases in
wealth, as is the case with the class of constant relative risk aversion (CRRA)
utility:

u(x) =
x1−γ − 1

1− γ
, (4.12)

This function is defined only for x ≥ 0. The coefficient of relative risk aversion
is

R(x) ≡ −u
′′(x)

u′(x)
x = γ ,
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a constant. For this function the coefficient of absolute risk aversion A(x) =
R(x)
x

= γ
x
decreases in wealth.

A positive affine transformation of utility u (i.e. a positive multiplicative or an
additive constant) does not alter decisions, so the denominators and the ±1
in u(x) = 1−e−αx

α
and u(x) = x1−γ−1

1−α
are redundant. Nevertheless, there are

three reasons for keeping these terms. First, their presence means that we do
not need to change the function in order to maintain positive marginal utility
when α or 1−γ are smaller than zero. Second, the denominators simplify the
expressions for marginal utility, a function that is often of more interest than
u itself. Third, the constants are necessary if we want to extend the domain of
the parameters α and γ to include 0 respectively 1 in a meaningful way. These
normalizing constants imply, using l’Hospital’s rule, that limα→0

1−e−αx

α
= x

and limγ→1
x1−γ−1
1−γ

= lnx.

To illustrate the use of the CRRA functional form, consider the case where
expected income is y and actual income is y ± ϵ, each with probability 0.5.
Define r as the risk premium, the amount that society would spend to sta-
bilize income at its mean value. The income shock is ϵ. Define w = r/ϵ,
the risk premium relative to the income shock. Using a second order Tay-
lor expansion of the CRRA utility function, evaluated at ϵ = 0, we obtain
an approximation for the maximum risk premium that society would pay to
eliminate the risk, relative to the income shock:

w =
r

ϵ
≈ 1

γ

(
−y
ϵ
+

√(y
ϵ

)2
+ γ2

)
(4.13)

(See exercise xx.) This formula shows that the risk premium, relative to the
size of the risk, depends on both the income level, y, and the aversion to
risk, γ. The ratio y/ϵ is an inverse measure of the amount of risk relative to
baseline income. As this risk becomes small (i.e. as y/ϵ → ∞), w → 0. As

the risk approaches its maximum, (i.e. as y/ϵ→ 1), w → 1
γ

(
−1 +

√
1 + γ2

)
,

a quantity that varies between 0 and 1 as γ increases from 0 to ∞. For
example, if γ = 2 (a value sometimes proposed for climate policy models)
then the approximation of w given by equation (reference here) exceeds 0.4
provided that ϵ > y/2.1. Thus, moderate levels of risk aversion correspond
to large values of w when the relevant risk, ϵ, is large.

A more general utility function, with harmonic absolute risk aversion (HARA),
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subsumes both the CARA and CRRA functions:

u(x) = ξ

(
η +

x

γ

)1−γ

(4.14)

implying

A(x) =

(
η +

x

γ

)−1

, and (4.15)

R(x) = x

(
η +

x

γ

)−1

.

The name HARA arises from the fact that absolute risk tolerance – the
inverse of absolute risk aversion (i.e. the denominator in equation 4.15) –
is linear. We obtain the CARA special case by letting γ approach infinity
and defining α = 1

η
. We obtain the CRRA special case by setting η = 0.

Another frequently used functional form also contained in the HARA class
(for γ = −1) is the quadratic utility function u(x) = ax − bx2. For this
functional form, utility is decreasing in wealth for x > a

2b
. The simplicity of

this functional form explains its frequent use. If we are interested in only
small changes around a fixed wealth level we can think of the quadratic form
as a second order approximation; risk aversion is a second order characteristic
of the utility function. Also, in situations where too much of a good is just
as bad as too little of it, quadratic utility might be a reasonable assumption.
With quadratic utility, preferences can be rewritten as a linear function of
the mean and the variance of the underlying random variable.
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4.8 Anticipated Learning

This section discusses how anticipated learning affects optimal decisions. We
consider two scenarios: complete learning, and a generalization, partial learn-
ing. With complete learning, a planner knows, at the time of making a first
decision, that she will learn the value of a unknown parameter before having
to make a second decision. Our objective is to understand how this antici-
pated learning changes the first period decision, relative to the case where the
planner does not expect to learn the value of the parameter before having to
make the second decision. With partial learning, the planner acquires infor-
mation about the unknown parameter, without learning its exact value. Here
our objective is to compare the effect, on first period decisions, of different
levels of learning.

The preceding sections study the problem of a planner who choses an opti-
mal consumption path facing uncertainty about the size of the resource stock,
or in the alternative interpretation, about the damage caused by GHG emis-
sions. This optimal plan does not incorporate the possibility that the planner
might learn about the unknown parameter as time evolves. That neglect is
rational if the planner either knows that she will learn the total resource
stock only after making her final decision, or if she has to commit to deci-
sions before observing the stock/damage. Most of the following analysis as
well as extensions can be found in ? and ?. ? also extend this model to
analyze effects of ambiguous uncertainty. Cite Gollier, Jullien and Treich)
provide the analyis of the model of partial learning.

4.8.1 Complete learning

Here we analyze the situation where the decision maker anticipates learning
the value of the uncertain parameter after the first period but before her
second period choice. In the resource extraction model we can think of this
change as an earlier resolution of uncertainty, i.e. uncertainty resolves at
the beginning of the second period rather than at the beginning of the third
period. In the GHG model we can think of moving to a more flexible decision
process that allows the social planner to react to observations.

The role of uncertainty in the climate change debate is sometimes modeled
using the setting in Chapter 4, where there is uncertainty but not anticipated
learning. It matters not only that the decision maker learns, but also that
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she anticipates this in making early decisions. Without the anticipation of
learning, she would solve the same problem as in Chapter 4 in the first period.
Then, when she learns about the actual size of the resource stock or the
damage parameter, she will make a new plan for second period consumption.
In contrast, in the setting here, the decision maker takes into account her
reaction to the resolution of uncertainty in the second period when she picks
first period consumption.

Climate policy will unfold over a significant period of time, at least several
decades. During this period, we are likely to get information both about
abatement costs and about climate-related damages. It is important that
future decision makers take their new information into account, and that
current decision makers understand that future decision makers will do so.

The formal difference in the setting with anticipated learning is that the
planner maximizes over the second period consumption before she takes the
expected value. She understands that by the time she picks x2 she will know
the realization θ of θ̃. At period 1 she therefore takes the expectation over
welfare given an optimal adjustment of x2 to the realization of θ̃. At period
1 the optimization problem is

max
x1

E max
x2

v(x1, x2, θ̃)

= max
x1

[u(x1) + E max
x2

u(x2) + u(θ̃ − x1 − x2)] .

We solve this problem recursively. The first order condition for x2 given x1
and a realization θ is

u′(x2) = u′(θ̃ − x1 − x2) . (4.16)

By solving this equation we find a function x2(x1, θ). Because u′ is strictly
monotonic, it is optimal to perfectly smooth consumption over periods 2 and
3 in the resource model, respectively to pick x2 such that marginal damage
equals marginal benefits, i.e.

x2 = θ − x1 − x2

⇔ x2 =
θ − x1

2
.

We substitute this decision rule into the first period objective, take the ex-
pected value, and then maximize with respect to x1 using the period-2 first
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order condition. The resulting first period first order condition is

u′(x1) = −E

{
u′
(
x2(x1, θ̃)

) dx2
dx1

− u′
(
θ̃ − x1 − x2(x1, θ̃)

)(
1 +

dx2
dx1

)}
⇔ u′(x1) = −E

{
−u′

(
x2(x1, θ̃)

)}
⇔ u′(x1) = Eu′

(
θ̃ − x1

2

)
. (4.17)

We obtain the second line by using equation (4.16) to cancel equal terms.
Comparing the first order conditions here with those of Chapter 4 enables
us to determine how the anticipation of learning (or the early resolution of
uncertainty) changes consumption (extraction/emissions) in the first period.

We denote the optimal consumption levels under uncertainty without learn-
ing as xu1 and xu2 . We intitially assume that the decision maker is prudent,
i.e. u′′′ > 0. By equation (4.9) we know that the optimal decisions satisfy

u′(xu1) = u′(xu2) = Eu′(θ̃ − xu1 − xu2) . (4.18)

Therefore the first equality in the following calculation has to hold

u′(xu1) = Eu′(θ̃ − xu1 − xu2) = E

[
1

2
u′(θ̃ − xu1 − xu2) +

1

2
u′(xu2)

]
(4.19)

> Eu′
(
1

2
(θ̃ − xu1 − xu2) +

1

2
xu2

)
= Eu′

(
θ̃ − xu1

2

)
.

The inequality sign holds by the assumed convexity of u′. The only way to
satisfy the first order condition (4.17) for the learning scenario is by increasing

x1 above the level xu1 ; this change decreases u′(x1) and increases Eu′( θ̃−x1

2
)

until both of them are equal for some xl1 > xu1 .

It is worth remembering how this argument implicitly uses the second order
condition. We relate back to Figure 1. The first order condition under
uncertainty without learning implies

u′(xu1)− Eu′(θ̃ − xu1 − xu2) = (4.20)

u′(xu1)− E

[
1

2
u′(θ̃ − xu1 − xu2) +

1

2
u′(xu2)

]
= 0.
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The assumed convexity of u′ implies

E

[
1

2
u′(θ̃ − xu1 − xu2) +

1

2
u′(xu2)

]
> Eu′

(
1

2
(θ̃ − xu1 − xu2) +

1

2
xu2

)
.

The second order condition for maximization implies that the graph of the
first order condition under uncertainty without learning (the solid graph in
Figure 1), as a function of x1, has a negative slope, at least in the neigh-
borhood of the equilibrium. Moving from the scenario with uncertainty and
no learning to the scenario with learning causes this graph to shift upward,
thus increasing the intersection of the graph and the x1 axis, increasing the
equilibrium value of x1.

At the optimal levels for a decision maker who does not anticipate learning,
the expected marginal utility in the second period is relatively too low and the
marginal utility in the first period is relatively to high. Increasing x1 at the
cost of decreasing x2 brings the marginal conditions into balance. Thus, the
anticipation of an early resolution of uncertainty makes the prudent decision
maker want to consume more in the initial period than in a scenario where
uncertainty is resolved late, or where the early resolution is not anticipated.
Again, for a decision maker who is not prudent (i.e. with u′′′ < 0) the
inequalities in equations (4.18) and (4.20) flip. Thus, anticipated learning
causes a decision maker who is not prudent to consume less in the first
period, relative to the same decision maker who does not anticipate learning.

Exercise xx asks the student to show that for a prudent decision maker the
first period consumption in the face of uncertainty with anticipated learning
is below the level of the agent who faces no uncertainty, i.e. xu1 < xl1 < xc1.
The argument is similar to the one used in deriving the other two inequalities.
Simply rewrite one of the two first order conditions in a suitable way to apply
Jensen’s Inequality.

Learning has a similar effect as a decrease in risk. The fact that under
learning the decision maker observes the random variable θ̃ before making her
choice of x2 permits her to partially offset the possible low level of the resource
or the high level of the damage. That ability to make adjustments effectively
reduces her risk over outcome fluctuation by smoothing the joint volatility
of the terms u(x2) and u(θ̃ − x1 − x2). Thus, we can think about learning
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as effectively decreasing risk. This perspective also gives a straightforward
intuition for why xu1 < xl1 < xc1.

4.8.2 Remark on Discounting∗

Our model assumes that the agent does not discount, or that there is a
two-phase setting with a suitable time horizon. Discounting might overturn
some of the earlier results. It is easiest to think of the resource extraction
interpretation of the model. We consider the case of a prudent decision
maker. A discounting decision maker values the future less than the present.
In our model, where the decision maker does not receive interest payments,
discounting causes her to prefer to consume more in period 2 than in period 3.

If there is uncertainty that resolves in period 3, volatility strikes the util-
ity function around the level that the decision maker expects to consume in
period 3. If uncertainty instead resolves at the end of period 1, second pe-
riod consumption adjusts to the new information. Therefore, learning makes
second period consumption volatile, causing second period consumption to
absorb some of the third period volatility. With learning, the volatility strikes
the utility function at the period 2 consumption level, which in expectation
can be higher than expected third period consumption, relative to the pre-
vious scenario of late resolution. In particular, if prudence is much higher
at the higher consumption level, the (prudent) decision maker might want
to decrease consumption when uncertainty resolves earlier. ? construct such
an example. They use a quite special utility function and a discount factor
β < 1

2
(huge!) to get this result. The authors also prove that for HARA utility

functions (see section 4.7) the earlier result always holds: a prudent decision
maker increases initial consumption if uncertainty resolves early rather than
late. Their model corresponds to our model enriched by a discount rate (and
it permits the agent to receive interest payments).
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4.8.3 Partial Learning∗

Here we study the generalization where the decision maker anticipates learn-
ing something, rather than everything, about the unknown parameter, θ. A
decision maker obviously obtains more information in the scenario where she
learns everything rather than nothing about the unknown parameter. In a
more general setting, we need a way of ranking information structures, so
that we can say that one structure is more informative than another. Given
such a definition, we can examine how the anticipation of the receipt of better
information affects first period decisions. We assume here that the unknown
parameter θ̃ has a discrete subjective distribution, with possible realizations
θi, i = 1, 2...m.

Suppose that it is possible to conduct an experiment that teaches us some-
thing about the true value of θ̃. The outcome of the experiment, before it
takes place, is a unknown, so we regard the outcome as a random variable.
The fact that the outcome tells us something about the true value of θ̃ means
that the two are correlated. Thus, we speak of the experiment as a random
variable ỹ that is correlated with θ̃. The conditional probability of θ̃ given
that the outcome of the experiment is y is πy (θi):

πy (θi) = Pr
(
θ̃ = θi | ỹ = y

)
.

Just as there are different but equivalent ways of expressing the meaning of
“more risky” or “more risk averse”, there are different but equivalent ways to
compare the information content of an experiment. We need some notation.
Define πy as them-dimensional vector whose i’th element is πy (θi) and define
the simplex

∆π =

{
πy ∈ Rm

+ |
∑
i

πy (θi) = 1

}
.

Consider two possible experiments, equivalently, two random variables, ỹ and
ỹ′. Experiment ỹ is said to be more informative than experiment ỹ′ if and
only if, for any convex function ϕ (πy) defined on ∆π

Eỹ [ϕ (πỹ)] ≥ Eỹ′ϕ (πỹ′) . (4.21)

Each of the experiments (the random variables ỹ and ỹ′) has various possible
outcomes, and each outcome tells us something about the unknown param-
eter θ. That information leads to a conditional distribution πy, for which
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there is a corresponding payoff ϕ (πy). The information structure ỹ is more
informative than the information structure ỹ′, i.e. the decision maker prefers
the experiment ỹ to ỹ′, if and only if inequality 4.21 holds for all convex
functions ϕ (πy).

This definition is not intuitive. In an attempt to help develop intuition, we
digress to consider the case where n = 2, i.e. where θ can take on only two
values. This binary setting enables us to use a two-dimensional graph to
illustrate the role of convexity. To this end, suppose that the two possible
realizations are θ1 = 2 and θ2 = 4. In this binary case, a single number,

p = Pr
{
θ̃ = 2

}
, (rather than a vector) describes the prior beliefs. For this

example the ex ante (before the receipt of information) mean of θ̃ is 4 − 2p
and the variance is 4p (1− p). For concreteness, suppose that p = 0.5, the
value that maximizes the ex ante variance. If there was complete learning,
then after the resolution of uncertainty the decision maker would know the
true value of θ with certainty. In this context, that certainty means that
either p = 0 or p = 1, depending on the result of the “experiment”.

Now consider two experiments, represented by the random variables ỹ and
ỹ′, which both lead to partial learning. In this binary example, there is no
loss of generality in assuming that both experiments are binary random vari-
ables, yielding a low outcome with probability α and a high outcome with
probability 1 − α. Under experiment ỹ the conditional probability after
observing the low signal is p′1; this conditional probability occurs with prob-
ability α. The conditional probability after observing the high signal is p′2;
this conditional probability occurs with probability 1− α. The expectation
of the conditional probabilities must equal the ex ante probability, i.e.

αp′1 + (1− α) p′2 = p = 0.5.

This equality states that the decision maker’s expectation, before observing
the signal, of his ex post belief equals his ex ante belief. Figure 2 shows the
conditional probabilities, p′1 and p′2. These probabilities lie on either side of
the ex ante probability p = 0.5.

If the experiment ỹ′ led to complete information, then we would have p′1 = 0
and p′2 = 1. If the experiment provided no information, then we would have
p′1 = 0.5 = p′2. The fact that the experiment leads to only partial information
explains why the values p′1 and p′2 lie between 0 and 1, on either side of the
ex ante probability 0.5. As the experiment becomes more informative, it
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should seem at least plausible to the reader that the values p′1 and p′2 move
away from p = 0.5 toward the states of complete certainty, p = 0 and p = 1.
Denote the ex post probabilities under the more informative experiment, ỹ,
as p1 and p2. Figure 2 shows these values, with

0 < p1 < p′1 < 0.5 < p′2 < p2 < 1. (4.22)

These inequalities imply that both experiments provide some learning, but
not complete learning, and that experiment ỹ is more informative than ỹ′.

Now we ask “Under what conditions does a decision maker prefer the more
informative experiment?” Recall that in this example, with the experiment ỹ′

the decision maker faces p′1 with probability α and he faces p′2 with probability
1−α. With the experiment ỹ he faces p1 with probability α and he faces p2
with probability 1 − α. Figure 2 shows a solid convex graph and a dashed
concave graph. The relative positions of these two graphs is immaterial;
all that matters is that one is concave and the other convex. If the convex
graph describes the decision maker’s payoff, as a function of the ex post
probability, then he prefers the more informative signal. If the concave
function were to describe his payoff, as a function of the ex post probability,
then he would prefer the less informative signal. Again, the purpose of this
example and this graph is to explain why the statement that one experiment
is more informative than a second experiment involves the expectation of a
convex function.

We can push this example a bit further in order to make a second point.
Before learning, the decision maker views his ex post belief as a random vari-
able. Denote the random variable “ex post belief” as p̃. Under experiment
ỹ the realizations of this random variable are p1 and p2, and under the ex-
periment ỹ′ the realizations are p′1 and p′2. Both of these random variables
have the same expectation, because in both cases the expectation of the ex
post belief must equal the ex ante belief. In the binary example it should
be clear that the variance of p̃ is greater under the more informative signal.
To demostrate this claim formally, note that the variance under the more
informative signal is

σ2
ỹ = α (p1 − 0.5)2 + (1− α) (p2 − 0.5)2

and the variance under the less informative signal is

σ2
ỹ′ = α (p′1 − 0.5)

2
+ (1− α) (p′2 − 0.5)

2
.
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The ranking
σ2
ỹ > σ2

ỹ′

is a consequence of inequality 4.22.

The statement that better information leads to a higher variance strikes many
readers as counter-intuitive. However, it is important to keep in mind what
the variance here refers to: it is the variance of what we think today our
beliefs will be tomorrow. If we do not expect to obtain new information,
then we think that our beliefs tomorrow will be the same as our beliefs today.
If we expect to obtain significant information, then we think that our beliefs
tomorrow will be quite different from our beliefs today. However, since we
do not yet know what that information will be, we regard tomorrow’s beliefs
as highly variable.

Although better information is associated with a larger variance of our pos-
terior beliefs, for this binary example (but not in general) the conditional
variance of the outcome of the underlying random variable, θ̃, is lower under
better information. For example, if the signal is low, then the conditional
variance of the outcome under the more informative signal is 4p1 (1− p1) and
the conditional variance of the outcome under the less informative signal is
4p′1 (1− p′1). In view of inequality 4.22, 4p1 (1− p1) < 4p′1 (1− p′1). We have
the same ranking of the conditional variance given a high signal. Therefore,
the ex ante expectation of these conditional variances of the underlying ran-
dom variable is lower under the more informative signal.

We summarize the three main lessons of this binary example as follows:

• A more informative signal leads to a higher spread of ex post probabil-
ities; the decision maker prefers a more informative signal if and only if
his ex post expected payoff is a convex function of the probability that
defines his ex post belief.

• A more informative experiment leads to a higher ex ante variance of
the random variable “ex post belief” .

• A more informative experiment leads to a lower expectation of the
conditional (ex post) variance the underlying random variable θ̃.

The statement that one experiment is more informative than another implies
that the unconditional distribution of θ (before the result of an experiment
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is known) is the same under the two experiments. (We used this result above
in discussing the binary example.) To verify this claim, note that the linear
function ϕ (πy) = γπy, where γ is a vector of constants, is convex, as is the
negative of this function, ϕ (πy) = −γπy. Therefore, if ỹ is more informative
than ỹ′, inequality 4.21 implies that

Eỹ {γπỹ} = Eỹ′ {γπỹ′} .

Because this equality holds for all γ, it must be the case that Eỹπỹ = Eỹ′πỹ′ ,
i.e. the unconditional distributions are the same. Thus, comparison of the
two experiments is “fair”, because we start out with the same beliefs before
learning the results of either experiment.

We now apply this definition to the resource/climate change problem. Sup-
pose that the decision maker faces the information structure defined by the
random variable ỹ. Her optimization problem in the first period is:

max
x1

[
u (x1) + Eỹ max

x2

Eθ̃|ỹ

(
u (x2) + u

(
θ̃ − x1 − x2

))]
. (4.23)

In choosing first period consumption, the decision maker knows that she will
observe the result of the experiment and update her subjective distribution
of the unknown parameter θ. Consider the consequence of a particular
realization, y, and resulting subjective probability distribution πy. Given
this realization, the second period conditional payoff is

ρ (πy;x1) = max
x2

m∑
i=1

(u (x2) + u (θi − x1 − x2))πy (θi) . (4.24)

The function ρ (πy;x1) is convex in π. This fact, and the definition of
“more informative” means that the unconditional (i.e. before the result of
the experiment is known) expected maximized value of the second period
payoff is higher when the decision maker expects to have better information.
To confirm that the function ρ (πy;x1) is convex in the vector πy, consider
two possible values for this vector, π1 and π2, and a convex combination
πλ = λπ1 + (1− λ) π2, with 0 ≤ λ ≤ 1. Convexity requires showing that

λρ
(
π1;x1

)
+ (1− λ) ρ

(
π2;x1

)
≥ ρ

(
πλ;x1

)
.

To establish this inequality, denote the optimal second period action under
π1, π2, and πλ as, respectively, x1, x2 and xλ. Now use the fact that xλ
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is feasible, but typically not optimal, under the distributions π1 and π2, to
establish that the left side of the inequality is always at least as great as
the right side. Exercise xx asks the student to fill in the details of this
demonstration.

Substituting the definition in equation 4.24 into the optimization problem
4.23 allows us to write that problem as

max
x1

[u (x1) + Eỹρ (πy;x1)] ,

with first order condition

u′ (x1) + Eỹ
dρ (πy;x1)

dx1
= 0 (4.25)

and second order condition

u′′ (x1) + Eỹ
d2ρ (πy;x1)

dx21
< 0.

By the envelope theorem we have

dρ(πy ;x1)

dx1
=

d[
∑m

i=1(u(x∗
2)+u(θi−x1−x∗

2))πy(θi)]
dx1

=

[∑m
i=1

du(θi−x1−x∗
2)

dx1
πy (θi)

] (4.26)

where x∗2 is the optimal value of x2 as a function of x1 and the information
y (the result of the experiment).

The comparative statics of the effect of information on the first period deci-
sion depends on the curvature of a derivative, dρ(πy ;x1)

dx1
, not on the curvature

of ρ (πy;x1). We encountered a similar result in considering the effect of
complete information; there the comparative statics depends on the curva-
ture of u′ (x). The function dρ(πy ;x1)

dx1
might be either convex or concave in

πy. Suppose that this function is concave. In that case, the definition of
“more informative” implies that if ỹ is more informative than ỹ′

Eỹ
dρ (πy;x1)

dx1
≤ Eỹ′

dρ (πy;x1)

dx1
. (4.27)

In this chain of reasoning, the function dρ(πy ;x1)

dx1
plays the role of ϕ (πy) that

appears in the definition of ”‘more informative”’.
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Again, it may help to visualize the graph of the left side of the first order
condition as a function of x1, which by the second order condition has a
negative slope at least in the neighborhood of the optimum value of x1.
Inequality 4.27 implies that the graph of the first order condition under the
experiment ỹ lies below the corresponding graph under the less informative
experiment ỹ′. Therefore the intersection of the former graph and the x1 axis
is less than the intersection under the latter graph. That is, the anticipation
of better information (having the experiment ỹ rather than the experiment

ỹ′) reduces the first period action x1. This result is reversed if dρ(πy ;x1)

dx1
is

convex rather than concave.

The comparative static question considered here is more difficult than the
question that arises in comparing the effect of complete information, because
here we need to determine the curvature of the endogenous function dρ(πy ;x1)

dx1

rather than the exogenous function u′ (x). These two functions are related,

using equation 4.26. For the HARA utility function, u (x) = ξ
(
η + x

γ

)1−γ

,

better information decreases the optimal x1 if and only if 0 < γ < 1; for
γ < 0 or γ > 1 better information increases x1. If the utility function is not
HARA, the effect of better information is ambiguous.

Jones and Ostroy (1984) {Robert Jones and Joseph Ostroy ”Fleximility and
uncertainty” Review of Economic Studies 51(1) 13 - 32, 1984} provide an
alternative characterization of the effect of better information on first period
actions. Define the expected second period value of information as

Λ (x1) ≡ Eỹρ (πy;x1)− Eỹ′ρ (πy;x1) .

The anticipation of better information decreases the first period action if and
only if Λ (x1) is a decreasing function.

In the context of the climate change problem, where x1 is emissions during
the first phase of a decision problem, the slope of Λ (x1) could be either
positive or negative. For example, it might be the case that if we allow
GHG concentrations to reach a high level (x1 is large), society will have
painted itself into a corner and better information will not be of much use; in
contrast, if we keep concentrations relatively low, we will have the flexibility
to respond to better information about damages. In this case, Λ (x1) is a
decreasing function, so the anticipation that we will obtain better information
reduces the optimal level of current emissions. Alternatively, it might be
the case that better information will be especially important if future GHG
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concentrations are high. For example, with high GHG concentrations the
optimal period 2 action might be very sensitive to our belief that the world
is near a tipping point; in that case the expected future payofff would likely
be sensitive to the receipt of better information. In contrast, with low
GHG concentrations we might be quite sure that the world is far from a
tipping point, and future actions might then be insensitive to the type of
information we receive. In this scenario, the value of information is likely
to be increasing in x1, so the anticipation of better information increases
current emissions. This example illustrates why casual reasoning is not
much help in determining how society should respond to the anticipation
of future improvements in climate science. The optimal response can be
quite sensitive to modeling assumptions. The role of formal analysis is to
make these assumptions explicit and then to understand their effect on model
predictions.

4.8.4 Learning under risk neutrality

Here we examine the effect of anticipated learning when the unknown pa-
rameter enters the payoff linearly. Learning can increase or decrease the first
period action. This problem is intrinsically important because in some situa-
tions it is natural to assume that the unknown parameter enters the problem
linearly. It is also pedagogically useful as a means of showing how to use the
machinery developed above to study the effect of anticipated learning. In an
important special case, where the primitive functions are quadratic, learning
increases the first period action. We can also show the relation between
prudence and the effect of anticipated learning. We discuss this problem in
the context of a climate change model.

Let emissions in the first and second period be x1 and x2. In the absence of
decay, the stock of pollution at the end of the second period is x1 + x2. The
benefit of emissions is the concave increasing function u (x) and the cost of
pollution is θv (x1 + x2), where the parameter θ is unknown and v is convex
and increasing. Neglecting discounting, the payoff is

u (x1) + u(x2)− θv (x1 + x2) . (4.28)

The decision maker obtains information about θ between making the first
period and the second period decisions. We assume that the non-negativity
constraints, xi ≥ 0, are not binding, so we ignore those constraints.
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The key feature of this problem is that the unknown parameter, θ, enters the
payoff linearly. In the absence of learning, the risk neutral decision maker
maximizes expression 4.28, replacing θ by its subjective expectation. Thus,
in the absence of anticipated learning, uncertainty about θ has no interesting
effect on the problem; it merely requires that we replace a random variable
by its mean.

Ulph and Ulph (1997?) studied this problem for the case where the primitive
functions u and v are quadratic. By obtaining an explicit solution for the
first period decision rule, they showed that anticipated learning increases the
first period emissions, i.e. the opposite of the Precautionary Principle holds.
In most settings, an explicit solution to the first period decision cannot be
obtained; in those cases, we can nevertheless obtain some intuition about the
problem by using the machinery developed above. Consideration of the more
general formulation, where we require only that u be increasing and concave
and v be increasing and convex, illustrates the use of this machinery. It leads
to a somewhat simpler derivation of the result for the quadratic case, and it
also shows the effect of allowing more general functional forms. For example,
the opposite of the Precautionary Principle also holds if u is quadratic and
v′′′ < 0 or if v is quadratic and u′′′ > 0. (The signs of the third derivatives
are opposite in these sufficient conditions, because there is a negative sign in
front of v in the objective.)

There are many ways to model learning, but perhaps the simplest is to assume
that

θ = θ̄ +
n∑

i=1

yi, with yi iid
(
0, σ2

)
.

That is, θ is the sum of a known constant, θ̄, and n unknown parameters,
which we model as independently identically distributed random variables,
each with mean 0 and variance σ2. The decision maker observes the first s
of these random variables between making the first and the second decisions:
a larger value of s corresponds to more learning.

Define the regulator’s expectation of θ, after the receipt of information (“learn-
ing”), as θ1 = θ̄+

∑s
i=1 yi. Prior to learning, the decision maker treats θ1 as

a random variable with mean θ̄ and variance sσ2. In this context, increased
learning corresponds to a greater variance of the subjective random variable
describing our views in the first period of the information that we will have
after learning. In the absence of learning θ1 = θ̄, a constant.
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It is is useful to recall the binary example above. There we saw that in-
creased learning increases the variance of the random variable that defines
the beliefs we hold tomorrow. In the binary example, tomorrow’s beliefs are
completely decribed by the realization of p̃. In the example under consider-
ation here, the sufficient statistic to describe tomorrow’s beliefs is θ1. From
the perspective of today, the anticipation of better information (a more in-
formative signal) increases the variance of the random variables that describe
our future beliefs. However, more learning, equivalently, a larger value of s,
decreases the ex post variance of the underlying random variable θ̃. In the
absence of learning, the second period variance of this random variable is
nσ2. With learning, the second period conditional variance of this random
variable is (n− s)σ2, which decreases with s. Again, we see that more learn-
ing increases the subjective variance of the random variable that describes
our future information; more learning decreases the conditional (ex post)
variance of the underlying random variable.

Due to the fact that θ enters the payoff linearly, only its posterior mean,
θ1, and not the higher subjective moments of θ, enter the second period
problem. The entire ex ante (before learning) distribution of θ, and not
merely the prior mean (θ̄) affect the problem in the first period.

The regulator’s problem after learning, is to maximize

Eθ [u(x2)− θv (x1 + x2)] = u(x2)− θ1v (x1 + x2) .

The first order condition to this problem is

u′(x2)− θ1v
′ (x1 + x2) = 0.

This first order condition implicitly defines the optimal second period deci-
sion, x2 = x∗ (θ1, x1). Differentiating the first order condition once and then
again, leads to the expressions for the first and second partial derivatives of
the decision rule:

∂x∗

∂θ1
=

v′

u′′ − θ1v′′
< 0, (4.29)

∂2x∗

∂θ21
=

1

(u′′ − θ1v′′)
2

[
(u′′ − θ1v

′′) v′′
∂x∗

∂θ1
− v′

[
(u′′′ − θ1v

′′′)
∂x∗

∂θ1
− v′′

]]
=

(
v′

u′′ − θ1v′′

)2 [
−
(
(u′′′ − θ1v

′′′)

u′′ − θ1v′′

)
− 2

(
−v′′

v′

)]
. (4.30)
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The first term in square brackets in the last line of equation 4.30 equals
the measure of absolute prudence of the continuation payoff, u − θ1v, and
the second term is twice the measure of absolute risk aversion of the damage
function. Thus, the second period decision rule is concave in the information
realization, θ1, if and only if absolute prudence with respect to the entire
continuation payoff is less than twice the absolute risk aversion associated
with the damage function.

We summarize the anticipated amount of information using s, the number of
components of θ that the decision maker will learn before taking the second
action. The continuation payoff, as a function of the first period decision
and the anticipated amount of information, is

J (x1, s) = Eθ1 {u(x∗ (θ1, x1))− θ1v (x1 + x∗ (θ1, x1))} .

The first order condition for x1 is

u′ (x1) + Jx1 (x1, s) = 0.

At the optimal x1, the graph of the left side of this equation, as a function of
x1, has a negative slope, by the second order condition. Better information
(a larger value of s) increases the first period level of emissions if and only
if it shifts up the second term, i.e. if and only if Jx1,s (x1, s) > 0. We now
show how to sign this partial derivative.

Using the envelope theorem, we have

Jx1 (x1, s) = Eθ1 {−θ1v′ (x1 + x∗ (θ1, x1))} .

Define the function

f (θ1;x1) = −θ1v′ (x1 + x∗ (θ1, x1)) ,

so we have Jx1 (x1, p) = Eθ1f (θ1;x1). We noted that an increase in informa-
tion corresponds (in this setting) to a larger variance of θ1. Using the results
from Chapter 3 we conclude that Jx1,s (x1, s) > 0 if and only if f (θ1;x1) is
convex in θ1. We therefore consider the curvature of this function.
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Using equations 4.29 and 4.30, we have

fθ1 (θ1;x1) = −
[
v′ (x1 + x∗ (θ1, x1)) + θ1v

′′ (x1 + x∗ (θ1, x1))
∂x∗

∂θ1

]
fθ1θ1 (θ1;x1) = −

[
2v′′

∂x∗

∂θ1
+ θ1

[
v′′′
(
∂x∗

∂θ1

)2

+ v′′
∂2x∗

∂θ21

]]

= −v′′
[
2
∂x∗

∂θ1
+ θ1

[
v′′′

v′′

(
∂x∗

∂θ1

)2

+
∂2x∗

∂θ21

]]

= −v′′
[
2

v′

u′′ − θ1v′′
+ θ1

[
v′′′

v′′

(
v′
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+
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(u′′ − θ1v′′)
2

(
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(
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′′′)
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u′′ − θ1v′′
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= − v′v′′

u′′ − θ1v′′

[
2 + θ1

[
v′′′

v′′

(
v′

u′′ − θ1v′′

)
+

1

(u′′ − θ1v′′)

(
2v′′ −

(
(u′′′ − θ1v

′′′)
v′

u′′ − θ1v′′
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= − v′v′′

u′′ − θ1v′′
[A+B]

where we define

A = 2 + θ1
2v′′

(u′′ − θ1v′′)
=

2θ1u
′′

(u′′ − θ1v′′)
> 0

B = θ1

(
v′

u′′ − θ1v′′

)[
−(u′′′ − θ1v

′′′)

(u′′ − θ1v′′)
−
(
−v

′′′

v′′

)]
. (4.31)

The fact that − v′v′′

u′′−θ1v′′
> 0 implies that f (θ1;x1) is convex in θ1 (so that

learning increases the first period action) if and only if A + B > 0. The
concavity of u and the convexity of v imply that A > 0. Thus, a sufficient
condition for A + B > 0 is B ≥ 0. If both u and v are quadratic, then
B = 0, so learning increases the first period decision.

More generally, we see that B > 0 if and only if the term in square brack-
ets in equation 4.31 is negative. This term is the difference between two
measures of absolute prudence: the absolute prudence associated with the
continuation payoff, u − θ1v, (the first term) minus the absolute prudence
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associated with the damage function, v (the second term). We conclude
that if the decision maker is more prudent with respect to damages than
with respect to the continuation payoff, then anticipated learning increases
the first period action. If the ranking of prudence is reversed, the effect of
anticipated learning on the first period action is ambiguous.

If u′′′ = 0 and v′′′ ̸= 0, then B > 0 if and only if v′′′ < 0; if instead v′′′ > 0,
then B < 0 and the sign of A + B is ambiguous. Similarly, if v′′′ = 0 and
u′′′ ̸= 0 then B > 0 if and only if u′′′ < 0; if instead u′′′ > 0, then B < 0 and
the sign of A+B is again ambiguous.
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5 Multiperiod Anticipated Learning

”Active learning” describes the situation where the decision maker manipu-
lates a state variable in order to gain information. For example, a monopoly
might believe that the stock of loyal customers (a state variable) changes as
a result of advertising, but not know the exact relation between advertising
and the change in the stock, i.e. the monopoly might not know a parameter
value in the equation of motion. The monopoly might choose its advertis-
ing level (a control variable) over time in order to learn about the unknown
but fixed parameter value. The model in the Clarke and Mangel, where an
animal decides which patch to search for food, contains another example of
active learning.

In some settings, even though the decision maker affects the future value of
the state variable, which in turn affects the amount of information contained
in a random signal, it is too costly to manipulate the state for the purpose of
improving information. For example, in a macro economic setting, the mag-
nitude of changes in the money supply might affect the amount of learning
about the relation between money supply and inflation. In an environmental
setting, the level of the stock of greenhouse gasses might affect the amount
of learning about the relation between those stocks and damages. However,
the cost of changing the money supply or the stock of greenhouse gasses
is so large relative to the value of additional information produced by that
change, that the possibility of acquiring information has negligible affect on
the choice of the control rule. That is, even though the model does allow
for active learning, and even though the anticipation of learning is impor-
tant to the decision rule, that rule is not chosen for the purpose of acquiring
information.

”Passive learning” describes the situation where learning is exogenous to the
decision maker’s actions. In this setting, actions taken by the decision maker,
such as those that alter the level of the state variable, have no effect on the
amount of information. The model structure determines whether learning
is active or passive. We explain this relation in the context of a particular
problem below.

Modeling learning requires using a state variable to describe information.
We discuss two types of approaches, using either a discrete or a continuous
distribution. In both cases we use examples rather than a general frame-
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work, in order to make the ideas as clear as possible and keep notation to a
minimum.

Throughout this section, a central assumption is that the decision maker
anticipates learning. If the decision maker happens to learn, but does not
anticipate that he will learn in the future, the problem is very different (and
much simpler and less interesting).

5.1 Discrete distribution

Suppose that the single period payoff is

U (c)−∆d(S)

Where S is the stock of GHG (a state variable) in the current period and
c is emissions of GHG (the control variable) in a period. The benefit of
emissions is U and the damages associated with the stock is ∆d, where d is
a known function and ∆ is unknown. Section 5.2.1 considers the case where
∆ is a random variable, and we learn about its distribution. Section 5.2.2
considers the case where ∆ is a fixed parameter and we obtain information
about the value of this parameter.

The stock of GHGs evolves according to

S ′ = f(S, c) (5.1)

where f is the growth equation and S ′ is the stock in the next period. Recall
our use of the convention that a variable without a time subscript is the value
of the variable in an arbitrary period – in many cases, the ”‘current period”’,
and the variable with a prime is the value of that variable in the next period.

5.2 Learning about ∆

We first discuss two ways to think about learning. We can either assume
that ∆ is a random variable and we learn about its distribution, or we can
treat ∆ as a fixed but unknown number, which we learn about over time.
Then we consider two ways of solving the problem (using either model of
learning): either dynamic programming or stochastic programming.
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5.2.1 ∆ is a random variable with unknown distribution

First, suppose that ∆ is a random variable. For the purpose of generating a
tractable model, we assume that ∆ is a draw from one of two distributions.
For example, we may have competing models of climate change that result in
two distributions of the random variable. For modeling purposes, we assume
that one of these distributions is correct; we obtain information over time
about which of the two distributions is more likely to be the correct one. The
problem is to choose the control rule for emissions, taking into account that
in the future we will have better information than today concerning which
of the two possible distributions is correct.

Denote these two distributions as x1 and x2. Associated with each distribu-
tion there are two possible outcomes, G and B. Under the first distribution
the probability is q that the realization of ∆ is G; under the second distri-
bution the probability is r that the realization of ∆ is G. G and B are
numbers, with G < B. The two realizations correspond to low damage (G)
and the high damage (B) outcomes.

Table 1 gives the outcomes and probabilities associated with these two dis-
tributions. These are conditional probabilities, the probability of an event
conditional on x.

realization of ∆ x = x1 x = x2
G q r
B 1− q 1− r

Table 1: The conditional distributions of random variable ∆

If q < r then GHG stocks present a greater danger if the ”truth” is x = x1
rather than x = x2.

For the purpose of the model, q and r are taken to be objective probabilities.
The decision maker is uncertain which distribution is correct, and at time
t has subjective probability pt that x = x1 The subjective probability at
time t that x = x2 is therefore 1 − pt. Denote P (pt,∆t) as the posterior
probability, the subjective probability that x = x1 when the prior is pt and
you observe ∆ = ∆t:

pt+1 = P (pt,∆t) = Pr {x = x1 | ∆t, pt} . (5.2)
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Using Bayes’ Rule we can write the values of P (pt,∆t) for the two possible
realizations of ∆:14

P (pt, G) =
ptq

ptq + (1− pt) r
(5.4)

P (pt, B) =
pt (1− q)

pt (1− q) + (1− pt) (1− r)
. (5.5)

In this model, the subjective probability, p is a state variable, the equation
of motion of which is given by equation 5.2. Note that the evolution of
p is stochastic, since the evolution depends on the realization of a random
variable, ∆. Also note that the evolution does not depend on actions that
the decision maker takes; learning is passive.

Increasing the number of possible outcomes of ∆ does not greatly increase
the size of the problem – it just means that we have more possible outcomes,
i.e. more equations of the form of equations 5.4 and 5.5. In contrast, in-
creasing the number of possible distributions increases the dimensionality of
the state variable, and significantly increases the size of the problem (which
has important implications on the feasibility of obtaining a numerical solu-
tion). If there are n possible distributions we need n − 1 state variables
to describe beliefs; each state variable is the subjective probability that a
particular distribution describes the world. Since the probabilities sum to
1, we only need n− 1 numbers to keep track of the n probabilities.

5.2.2 The ”star information structure”

Kolstad (JEEM 1996) uses an alternative called the ”star information struc-
ture”. In this setting ∆ is a parameter (rather than a random variable)
that takes a particular value, either G or B, but the decision maker does not
know which value it takes. Let g be a signal that makes us think it is more
likely that ∆ = G, and b be a signal that makes us think it is more likely

14To obtain equation 5.4 and 5.5, use the rule

P (A ∩B) = P (A | B)P (B) = P (B | A)P (A)

to write

P (B | A) =
P (A | B)P (B)

P (A)
. (5.3)

Associate the event A with ∆t = G and the event B with x = x1. Equations 5.4 and 5.5
then follow directly from the formula 5.3.
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Missing figure

that ∆ = B. If at time t our subjective probability that ∆ = G is pt, then
if we observe the signal g we update our probability according to

p (pt, g) = λ+ (1− λ) pt.

If we observe the signal b we update my probability to

p (pt, b) = 0λ+ (1− λ) pt.

Our updated subjective probability is a convex combination of the previous
probability and the state of being certain (p = 1 or p = 0). If λ = 1 then after
one observation we know the true value of ∆. If λ = 0 our observation in the
current period provides no information, and we never change our subjective
beliefs. As λ ranges from 0 to 1, the signal becomes more informative.

Figure ?? represents the star information structure when there are three
(rather than two) possible values of ∆, call them G, B, U and let pj j = 1
for G, j = 2 for B, and j = 3 for U be the subjective prior probabilities
of each of the outcomes. A point such as ”A” in the simplex represents a
particular prior distribution. If, for example, λ = 1

2
as in the Figure, then if

the signal in the present period is g then our subjective belief moves half way
from the prior probability, point A, to being certain that ∆ = G. The point
(0,1) in the simplex represents this state of certainty. The point ”a” in the
figure is half way between the point A and (0,1); point ”a” is our posterior
if λ = 1

2
, the prior is ”A” and the signal is g. Similarly, if the signal in

the current period is b then the posterior probability is point ”b”, and if the
signal is u the posterior is point ”c”.

5.2.3 Comparing the two ways of modeling learning.

The star information structure has the advantage that it uses a single param-
eter, λ, to model the speed of learning. The disadvantage of that approach
is that it does not permit a clear distinction between risk (the fact that there
is objective randomness) and uncertainty (the fact that we do not know the
probability distribution of a random variable). If ∆ is really a parameter
that takes a single value (rather than a r.v.), then one observation should be
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enough to learn that value, unless there is some other randomness – but that
additional randomness is not modeled. For example, as p approaches either 0
or 1, the amount of randomness goes to 0. It seems reasonable to think that
the difficulty of learning arises because we receive noisy signals, i.e. because
the relation between damages and the stock of GHGs really is stochastic, not
merely uncertain. As our uncertainty about this relation diminishes, there
remains the objective stochasticity. However, the star information structure
assumes that as our uncertainty about the relation diminishes, the objective
stochasticity also diminishes.

In contrast, the specification of underlying distributions recognizes that there
is exogenous randomness; this fact makes it difficult to learn the true dis-
tribution. Even after the decision maker knows the true distribution, i.e.
as p approaches 0 or 1, there is still randomness. The disadvantage of this
approach is that it is less parsimonious – the modeler has to specify both
q and r, instead of the single parameter λ. Nevertheless, this approach is
more appealing than the star information structure, because the former is
internally consistent. We therefore consider only that approach below.

5.3 Describing the optimization problem

There are two approaches to describing – and then solving – the optimization
problem. We can write it as a dynamic programming (DP) or as a stochastic
programming (SP) problem. We consider each of these approaches.

5.3.1 The DP problem

We study an autonomous control problem: there is an infinite horizon and
no explicit time dependence, apart from discounting at a constant discount
factor β. In this problem there are two state variables, S and p. We
continue to assume that S evolves deterministically, but it is straightforward
to add a random component to equation 5.1. This change requires that
in solving the problem we take expectations with respect to the additional
random component.
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Denote the value function as J (p, S) and write the DPE as

J (p, S) = max
c
E∆ {U (c)−∆d(S) + βJ (p′, S ′)}

subject to equations 5.1 and 5.2.

In taking expectations of ∆ we use the subjective distribution:

Pr (∆ = G) = pq + (1− p) r

Pr (∆ = B) = 1− [pq + (1− p) r] .

The realization of ∆ determines not only this period’s damages, but also the
subjective beliefs in the next period, p′.

Because ∆ appears linearly in the current period payoff, we can write

E∆ = G (pq + (1− p) r) + (1− [pq + (1− p) r])B. (5.6)

Given p, there are only two possible values of p′, depending on whether the
current realization of ∆ is G or B. We can list the two possible outcomes
of p′, say p′G and p′B, corresponding to the outcomes G and B in the current
period, and write

EJ (p′, S ′) =
[pq + (1− p) r] J (p′G, S

′) + [1− [pq + (1− p) r]] J (p′B, S
′) .

(5.7)

Using equations 5.6 and 5.7 we can remove the expectations operator from
the DPE.

Digression: anticipation Note that if the decision maker either does not
learn, or does not anticipate learning, the problem becomes much simpler.
In that case, we have a single state variable, S, and we treat p as a parameter.
Now the DPE is

J (S) = maxc {U (c)− (E∆)d(S) + βJ (S ′)}
subject to equations 5.1,

(5.8)

where equation 5.6 gives the formula for E∆. If the decision maker really
never learns, equation 5.8 is the DPE in every period.

Perhaps the regulator learns about ∆ but simply does not anticipate learning.
In that case, he still solves the DPE 5.8, but (to the decision maker’s surprise)
he has a different value of p in each period, as he acquires information. Our
point here is that it is not simply the fact of learning, but the anticipation of
learning that determines the nature of the problem that the decision maker
solves.
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Digression: a different state variable Suppose that the problem is non-
autonomous, so we have some reason to keep track of calendar time. For
example, there may be a finite horizon, or maybe there is some exogenous
(e.g. technical) change that we need to keep track of. In this situation, we
have to add the argument t to the value function. Set the initial time equal
to 0 so t gives both calendar time and the number of times we have observed
the realization of ∆.

In this case, an alternative to using p as the state variable is to use n =
number of times we observed the realization ∆ = G. If we began with
subjective probability p0 that x = x1 and n times we observed ∆ = G, and
t − n times we observed ∆ = B, then we can use Bayes’ Rule to calculate
my current subjective probability pt.

In other words, it does not matter whether we treat the arguments of the
value function as S, p, t or S, n, t. In both cases we need to keep track of
three arguments. (See the reading by Clarke and Mangel for an example of
the latter approach.)

However, consider the following minor change in the problem. Suppose
that there are 3 possible realizations of ∆, G,B,U ; as before, there are only
two possible distributions – x takes one of only two values. If we treat p
as the state variable, the addition of a third outcome to ∆ means that we
need one more equation for p′ (like equations 5.4 and 5.5), so we need to do
a few more calculations when to compute the expectations. However, we
do not need to increase the number of state variables. We will see that the
numerical complexity depends on the number of state variables. In contrast,
if we decide to keep track of outcomes, then we need to keep track of n, the
number of times we observed G, and m, the number of times I observed B
(so that I can calculate t − n −m, the number of times I observed U). In
this case, the minor change increases the dimension of the state variable –
something that we would like to avoid in order to reduce the difficulty of
solving the problem.

The point here is that often there are different ways to define the state
variable. We want as parsimonious a representation as possible.
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5.3.2 The SP problem

The SP problem requires keeping track of ”histories”. A history is a sequence
of outcomes. Suppose the initial period is time t = 0. By definition, there
are no histories at t = 0. At t = 1 there are two possible histories {G} and
{B}; at t = 2 there are 4 possible histories, {G,G} , {G,B} , {B,G} , and
{B,B}. Define a particular history at time t as ht.

At the initial time we can calculate the subjective probabilities of each of
these histories ocuring in the future. For example, at time 0 the subjective
probability of history {G} is simply p0, the initial subjective probability.
The subjective probability of {G,G} is p0P (G, p0), where we use equation
5.4 to calculate P (G, p0). Using calculations of this sort we can determine
the subjective probability of any history occuring in the future, conditional
on current information. Define this probability as µ (ht, t). For each time
t and history ht we can also calculate our subjective probability that ∆ =
G; denote this probability as π (ht, t). For example, we can calculate our
posterior probability that x = x1 after history ht; denote this posterior as
pt = P (ht, p0) to reflect the fact that the posterior depends on both our
initial prior p0 and the history ht. With this notation

π (ht, t) = ptq + (1− pt) r.

The SP is to maximize the expectation, over “future histories”, of the present
value of the sequence of future payoffs. The SP problem is

max
{c(ht,t)}

∞∑
t=0

βt

[∑
ht

µ (ht, t)
(
U (c)− [π (ht, t)G+ (1− π (ht, t)B) d(St)]

)]
subject to equation 5.1.

The underlined term gives expected damages in each period conditioned on
the history. Note that the optimization chooses a level of emissions for each
possible history, for each time.

In most cases we are really interested in behavior only during the next few
periods (each of which might consist of a decade). For most problems, the
decision rules are insensitive to the choice of final horizon, T , provided that
T is sufficiently big; with a discount factor β < 1, the very distant future
does not matter much. Therefore, there is little cost to realism in replacing
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the infinite horizon with a finite horizon, so that we have a finite number
of possible histories, and thus a finite number of choice variables c (ht, t).
In this case, the SP problem can be solved as a non-linear programming
problem, e.g. by using GAMS. Computational constraints may still limit
the number of possible histories.

The advantage of SP over DP is that the former allows the researcher to solve
a dynamic problem using a program like GAMS, whereas the DP generally
requires some programming. As a practical matter, the DP approach can
handle larger problems (more histories).

5.3.3 Digression: active and passive learning again

In the models above, the decision maker does not manipulate the state vari-
able in order to learn; in that sense the learning process is exogenous, i.e.
learning is passive. However, this model can be modified to introduce a
different kind of active learning, one that may be more relevant to environ-
mental problems.

For example, in the Star Information Structure, the parameter λ measures
the speed of learning. It might be possible to increase λ by paying a cost.
By solving the problem for different values of λ we can see how λ affects the
value of the payoff, and in this way determine how much we should spend to
increase λ.

In the model with explicit distributions, learning can occur more rapidly
if we obtain better signals. For example, the outcome G might include
”very good” (V G) and ”etzi-ketzi” (EK). We can compare the value of the
program when we observe only G and B with the value when we observe V G,
EK, and B. We can compare the increase in the value of the program, due
to the more precise signals (and faster learning) with the cost of obtaining
more precise signals.

The point of these examples is that we can use models of passive learning to
think about certain kinds of activities that change the speed of learning.

5.4 Continuous distribution

The model with discrete distributions is attractive because it permits a very
general representation of the different possibilities. The disadvantage of
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that model is that it is not parsimonious. As noted above, if we have n
possible distributions, we need n− 1 state variables to represent our current
information; each of these state variables is our subjective probability that
one of the possible distributions is the correct distribution.

An alternative uses continuous distributions. This alternative is more flexible
in that it allows infinitely many rather than several possibilities. However,
it restricts each of these infinitely many possibilities to be a member of a par-
ticular family that the modeler chooses. In addition, this modeling approach
requires that oury prior distribution and likelihood function are conjugates
– meaning that the posterior distribution has the same form as the prior.

5.4.1 Example 1: Poisson and gamma distributions

This example uses the climate change problem. We choose the distribu-
tions to illustrate the methods, not because they necessarily provide a good
representation of the climate change problem.

Suppose, as above, that the single period payoff is

U(c)−∆d(S),

where c is emissions, S is the stock of GHGs, U and d are known functions,
and ∆ is a random variable. In each period we observe actual damages
∆d(S) and we know the function d, so we can calculate the realization of ∆
in that period.

For the purpose of obtaining a tractable model, we assume that ∆ has a
Poisson distribution, with parameter λ:

Pr (∆ = s | λ) = e−λλs

s!
,

where s is an element of the set of positive integers. With this distribution,

E∆ = var (∆) = λ.

We model uncertainty by assuming that we do not know the true value of λ.
For example, if λ is a very small number, then the expected damage of S is
small; but if λ is large, expected damages are large. We model uncertainty
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about λ by choosing the prior distribution to be gamma with parameters r
and t:

Pr(λ̃ = λ | r, t) = e−λt (λt)r−1 t

(r − 1)!
.

More precisely, this is a special form of the gamma distribution, called the
Erlang distribution. Using this density,

Eλ̃ =
r

t
and var

(
λ̃
)
=

r

t2
.

The choice of initial values of r and t provides considerable flexibility in
modeling our uncertainty about λ. Suppose that the current values of the
parameters are r, t and in this period we observe a particular value of ∆; we
noted above that we can calculate this realization because we observe actual
damages and know the function d and the value of S. Due to the fact that
the gamma and Poisson are conjugates, our posterior on λ, after observing
∆, is also a gamma with parameters

r′ = r +∆
t′ = t+ 1.

(5.9)

Note that the evolution of the parameter r is stochastic, because it depends
on the realization of ∆, a random variable. However, the evolution of t
is deterministic. This fact is useful, because it means that we can include
non-stationarity (e.g. technical change) in the problem without increasing
the dimension of the state variable.

This problem has three state variables, S, t, and r. The expectation of the
single period payoff, given r,t, and S is

U(c)− d(S)Eλ

(
E∆|λ

)
∆ = U(e)− d(S)

r

t
.

The fact that ∆ enters the problem linearly leads to a particularly simple
expression for the expected single period payoff. If ∆ had entered the payoff
non-linearly, the expression for the expected single period payoff would have
required more calculation, but that is really a fairly minor issue, since we
need to use numerical methods to solve this problem in any case.

The DPE is

J (S, r, t) = max
c

[
U(c)− d(S)

r

t
+ βE∆J (S ′, r +∆, t+ 1)

]
subject to equation 5.1.
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The formula for the last expectation is

E∆J (S ′, r +∆, t+ 1)

∫∞
0

(∑s=∞
s=0

e−λλs

s!

)(
e−λt(λt)r−1t

(r−1)!

)
J (S ′, r + s, t+ 1) dλ.

The numerical solution to this problem is complicated by the fact that r
and t increase without bound. To solve it numerically one would have to
truncate the state space. For example, suppose that learning occurs only
a finite number of times; in this case, t is finite. Rather than letting r
be any positive integer, approximate the Poisson distribution by assuming
that it takes one of a finite number of values. These numerical issues are
important, but not the focus of this chapter.

Once again, it is worth pointing out that a fundamental feature of this prob-
lem is the anticipation of learning, not simply the fact of learning. If we
did not anticipate learning, then we treat E∆ as a parameter, rather than
a function of the state variable. Without anticipated learning, the state
variable is simply S and the DPE is

J (S) = max
c

[U(e)− d(S)E∆ + βJ (S ′)]

subject to equation 5.1.

The fact that we anticipate learning greatly complicates the problem, because
it means that we have to keep track of a larger state variable, one consisting
of three elements instead of a single element.

5.4.2 Example 2: Linear quadratic functions and normal distri-
butions

This example makes three points. First, we demonstrate how it is possible
to make some headway towards an analtic solution using the LQ functional
form. Second, we explain why the structure of the problem eliminates active
learning. Third, we show how to calibrate a model if in addition to the LQ
functions one additionally assumes normal likelihood and priors.
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The LQ functional form Here we extend the LQ model considered in
Chapter 2, by allowing the damage parameter to be uncertain and assuming
that we anticipate learning about this parameter. We briefly explain how
the model can be further extended to include asymmetric information about
costs, as in Chapter 2. This extension shows how anticipated learning about
the damage parameter affects the ranking of taxes and quotas. For the time
being, we ignore the problem of asymmetric information.

In the absence of a cost shock (thus removing the possibility of asymmetric
information) the benefit of emitting at rate x is

f + axt −
b

2
x2t .

The stock grows according to

St+1 = δSt + xt

where 0 < δ < 1 is a known parameter. [The notation in this chapter is not
consistent with the notation in Chapter 2 – something to be fixed later.]

The damages associated with a stock of St are

D(St, ωt;G
∗) =

G∗

2

(
St − S̄

)2
ωt.

Here G∗ > 0 is a fixed but unknown number and ωt is the realization of
a random variable with known distribution. In each period we observe
damages and we know the stock St and the parameter S̄. This information
enables us to calculate G∗ωt, but we are not able to infer the fixed value
of G∗. For example, we cannot tell whether high damages were a result of
a high realization of ω or a high value of G∗. However, after observing a
succession of damages, we begin to get a better idea of the level of G∗.

In order to be able to use standard dynamic programming methods, we need
to be able to describe the subjective distribution of G∗ using a finite number
of parameters. Those parameters are elements of the state vector. For sim-
plicity only we assume here that the subjective distribution of G∗ at time t is
determined by two moments, the mean and variance, χt ≡

(
Gt, σ

2
G,t

)
. How-

ever, the reader can think of σ2
G,t as a vector of higher moments rather than

a scalar (the variance). The regulator cannot predict his future subjective
expectation, so his current subjective expectation is an unbiased estimator
of its future value, i.e. EtGt+τ = Gt for τ ≥ 0.
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The form of our prior and our likelihood function determine how we update
the state χ. The prior and the likelihood function lead to a system of
equations analogous to equation 5.9. At least one equation in this system
must be stochastic, to reflect the fact that we do not know what information
we will have in the future, so we do not know what our beliefs will be in the
future.

For the time being, put aside the question of the exact updating system of
equations for χ. Assume that there is some such a system. Write ω̄ = Eωω.
Since, by assumption, we know the distribution of ω, we treat ω̄ as a fixed
parameter. The DPE is

J (S, χ) = max
x

[
f + ax− b

2
x2 −

(
EG∗|χ

G∗

2

)(
St − S̄

)2
ω̄ + βEχ′|χJ (S ′, χ′)

]
.

A nice feature of this problem is that the value function is linear-quadratic
in S. That is, J has the form

J (S, χ) = ξ (χ) + γ (χ)S +
ρ (χ)S2

2
.

In the LQ problem without learning, we saw that the value function also has
this form, but in that case ξ, γ, and ρ are numbers. Here, with learning,
they are functions of the information, χ. These functions can be calculated
numerically.

However, we can obtain some insight even without performing this calcula-
tion. In particular, consider the problem with learning where our current
subjective expectation of G∗ is Gt = G, where G is just some number. Com-
pare this to the problem in which we never expect to learn (perhaps because
we are certain that we know the value, or because we are naive, or simply
because we never do learn anything). In this problem without anticipated
learning, our expectation of G∗ is also G. Obviously, the two problems are
identical except that we expect to change our mind about the value of G∗

under anticipated learning, but not in the absence of such learning.

We can show analytically that for any value of G and S, the optimal level
of emissions is higher when we anticipate learning, compared to when we
expect never to learn. This result does not depend on the updating rule
for information. Anticipated learning makes us less cautious because we
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know that if we get bad news in the future (i.e., learn that G∗ is probably
greater than we originally thought) we can modify our actions in the future.
This option to act on future information makes bad news ”less bad”. The
result that anticipated learning increases emissions in this dynamic model
is a genaralization of the same result for the two-period model, discussed in
Chapter 3.

If we modify this model by adding a cost shock that is private information
to firms, then we have a generalization of the stock pollutant problem under
asymmeteric information, studied in Chapter 2. We can show that antici-
pated learning about the damage parameter favors taxes over quotas. This
result is quite intuitive, in view of the earlier result that anticipated learn-
ing increses the optimal level of emissions. The increase in emissions under
learning means that it is ”‘as if”’ learning causes the damage paramter G∗

to become smaller. We saw in Chapter 2 that a smaller value of the damage
parameter favors the use of taxes over quotas.

This problem is also convenient for explaining why there is no possibility for
active learning in this model. This feature is due to the fact that the uncertain
parameter and the random term ω enter the problem multiplicatively – not
to the linear quadratic structure of the problem. We write the ”data” (or
signal) at time t as

datat = ((2Dt)/((St − S)Â2)) = G∗ωt.

By Bayes’s theorem, the posterior on G∗, Pr(G∗|datat), is proportional to
the product of the likelihood function, Pr(datat|G∗), and the prior, Pr(G∗).
The numerical value of the data at t depends on G∗ and ωt, but not on
St. A change in St causes an offsetting change in Dt, leaving unchanged the
ratio ((2Dt)/((St − S)Â2)), Therefore, Pr(datat|G∗) is independent of St;
consequently, the posterior Pr(G∗|datat) is also independent of St. Changing
St does not change the information (about G∗) that the regulator obtains
from observing G∗ωt.

In order to make this point sharper, consider an alternative damage function
(G∗/2)(St − S)Â2 + ωt, where ω appears additively rather than multiplica-
tively. In that case, the data at time t still consists of the level of damages
and the level of the stock, (Dt, St); but in this case, a larger value of (St−S)2
causes G∗ to explain a greater proportion of the variation in damages. The
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possibility of active learning exists in this additive model, because by in-
creasing the stock of pollution, the regulator learns more about the damage
parameter.

The assumption of normality In order to calibrate a model for green-
house gasses, we need an explicit learning rule. One alternative is to assume
that the distribution of the damage shock is lognormal:

ωt ∼ i.i.d. lognormal

(
−σ

2
ω

2
, σ2

ω

)
. (5.10)

We express the subjective moments in terms of g ≡ lnG. The regulator
begins in period t with normal priors on g∗ = lnG∗, with mean gt and
variance σ2

g,t:

g∗ ∼ N
(
gt, σ

2
g,t

)
. (5.11)

Given distribution (5.11), the subjective distribution of G∗ is log-normal with

EtG
∗ ≡ Gt = exp

(
gt +

1
2
σ2
g,t

)
σ2
G,t ≡ vart (G

∗) = exp(2gt + σ2
g,t)
(
exp(σ2

g,t)− 1
)
.

(5.12)

Since damages are a product of independent log-normally distributed vari-
ables, the regulator has log-normal priors on damages. After observing
damages and the current stock, the Bayesian regulator updates his belief
about g∗. The moment estimator of g∗, denoted ĝt, is

ĝt = ln
2Dt(

St − S̄
)2+σ2

ω

2
(5.13)

with variance σ2
ĝ = σ2

ω. The posterior for g∗ is normally distributed with the
posterior mean gt+1 and posterior variance σ2

g,t+1:

gt+1 =
σ2
ω

σ2
ω + σ2

g,t

gt +
σ2
g,t

σ2
ω + σ2

g,t

ĝt, (5.14)

σ2
g,t+1 =

σ2
g,tσ

2
ω

σ2
ω + σ2

g,t

⇒ σ2
g,t =

σ2
g,0σ

2
ω

σ2
ω + tσ2

g,0

, (5.15)
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where σ2
g,0 is the prior at the beginning of the initial period, t = 0. (These

formulae are available in Greene’s text on Econometrics, pages 407-410 or in
Wikipedia.)

A smaller value of σ2
ω is equivalent to greater precision of future information.

Using equation (5.14), greater precision of information implies that this pe-
riod’s posterior mean, gt+1, is more responsive to information obtained in
the current period. Using equation (5.15), greater precision of information
means that the posterior variance decreases over time more rapidly. Thus,
greater precision of information increases the speed and amount of learning.

The subjective distribution for the unknown damage parameter G∗ collapses
to the true value of this parameter as the number of observations approaches
infinity. Appendix B1, available through JEEM ’s online archive for supple-
mentary material at http://www.aere.org/journal/index/html, proves this
result.

If the regulator begins with too optimistic a prior (g0 < g∗), gt increases over
time, in expectation. This increase can be enough to offset the decrease
in σ2

g,t, leading to an increase in vart (Gt) (using equation (5.12)). In this
case, during a phase of the learning process the regulator becomes less cer-
tain about the value of G∗, although he eventually learns the correct value
with probability 1. It is also straightforward to show that the regulator’s
current expectation of G∗ is an unbiased estimate of the future expectation:
EtGt+τ = Gt, ∀τ ≥ 0.

[Add material explaining how this model can be calibrated.]

In the absence of anticipated learning, the regulator solves the control prob-
lem treating Gt as a constant. In this case the constant Ḡ ≡ Gt =

exp
(
gt +

σ2
g,t

2

)
is the certainty equivalent value of G∗.

5.4.3 The role of conjugates

Both of these examples reuly on ”conjugate priors”, i.e. the prior and the
likelihood function are chosen so that the posterior has the same form as
the prior. This choice greatly simplifies the problem because it makes it
possible to write, in closed form, the equations of motion for the parameters
that define current beliefs.
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In principle at least it is fairly straightforward to drop the assumption of
conjugates, at the cost of some additional work on numerical approximation.

5.4.4 Criticism of these examples

These examples show how to model anticipated learning about climate change.
Arguably, the examples miss an important feature of the real world problem,
because they do not take into account abrupt and irreversible changes. Later
in this course we will discuss two kinds of irreversibilities, in the sections on
sudden, catastrophic events, and in the section on nonconvex problems. Both
of these modeling frameworks – particularly the nonconvex environment – of-
fer the possibility of studying anticipated learning in a much more interesting
and realistic setting.
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6 Numerical Methods

There are three principal approaches to studying dynamic problems. First,
models with certain functions admit closed form solutions; the log utility
paired with Cobb-Douglas production in Chapter xx and the linear-quadratic
model in Chapter xx are prominent examples. Second, some models, espe-
cially those with a single state variable, are amenable to qualitative graphical
analysis by means of a phase portrait, as we will discuss in Chapter xx. The
third approach involves numerical methods and has become increasingly im-
portant during the last fifteen years. With ever more powerful computing and
improved algorithms, numerical approaches are likely to become an essential
tool for economists working on dynamic problems. This chapter introduces
some of the ideas used to numerically solve dynamic problems. The success-
ful application of numerical methods requires art (or experience) as well as
science, and cannot be reduced to a series of menus. However, understanding
the basic menus is a first step in using numerical methods. We focus on what
we consider the most interesting case: a continuous control variable and a
continuous state space. At the end of the chapter we discuss an application
to the integrated assessment of climate change.

6.1 An abstract algorithm: function iteration

We begin with a one-state variable deterministic problem:

V ∗ (x, t) = max
{a}Tτ=t

T∑
τ=t

βτ−t U(aτ , xτ )

subject to xτ+1 = g(aτ , xτ ), with xt = x̄ given. (6.1)

In this problem, time is not an argument of the single period payoff function,
U , or the growth function, g, so the problem is autonomous if T = ∞. Given
that it is deterministic, and assuming T <∞, we can solve the problem using
non-linear programming methods. Non-linear programming is impractical in
stochastic settings, except for problems where there are a small number of
possible realizations of a random variable, and thus a small number of deci-
sion trees. Dynamic programming is especially useful in complex stochastic
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settings, but we begin with the deterministic problem in order to present the
basic ideas simply. We discuss higher dimensional and stochastic problems
below.

With t denoting calendar time, and defining s as time-to-go before the end
of the problem, s = T − t, we write the value function as V s (x) = V ∗ (x, t).
The dynamic programming equation, for s ≥ 1, is

V s (x) = max
a

{
U (a, x) + βV s−1 (g(a, x))

}
, (6.2)

with the boundary condition

V 0 (x) = max
a
U (a, x) . (6.3)

Here the superscript denotes the number of decisions remaining after the
current decision.

We discuss the algorithm known as value function iteration. The algo-
rithm begins by finding the solution to the problem on the right side of
equation (6.3) to obtain the function V 0 (x). Substituting that function
into equation (6.2) for s = 1, we then solve the resulting problem to ob-
tain V 1 (x). Proceeding iteratively, we solve the T one-stage problems. At
each stage, s, we obtain two functions: the decision rule, denoted as (x) =
argmaxU (a, x) + βV s−1 (g(a, x)), and the value function V s (x). We use
the value function for the “backward sweep”, increasing s, approaching the
initial time period. We use the decision rule for the “forward sweep”. Given
the initial condition, the value of xt = x̄, we can find the trajectory of the
optimally controlled state variable. In the stochastic setting we can use the
control rule for Monte Carlo simulations. In general, we can neither calculate
nor store exact solutions for the value function or the control rule. We there-
fore approximate the value function in each step. Given the value function,
we obtain the control rule from a quasi-static optimization problem. Hence,
we will sometimes decide to only approximate and store the value function,
and not the control rule. In order to approximate the value function we will
have to decide on the intervals over which we approximate the function and
the approximation method.

An abstract summary of the value function iteration algorithm is

I Initialization:
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1. Choose how to approximate the value function. Usually this step in-
volves the choice of:

• basis functions to approximate the value function,
• interval of the state space on which to approximate the value func-
tion,

• interpolation nodes at which you evaluate the optimization prob-
lem.

See section 6.2 for details.

2. For s = 0 in the case where

• T finite: maximize the right hand side of equation (6.3) at the
interpolation nodes. Proceed to step 4.

• T = ∞: pick an initial guess for the approximate value function
V 0. Set s = 1 and proceed to step 3.

II Iteration:
3. Maximize the right hand side of the Bellman equation (6.2) for s.
4. Approximate the solution of the maximization step. Usually this step

involves solving for the coefficients of the basis vectors. You obtain the
value function V s.

5. Increment time to go s by 1 and repeat steps 3 and 4 until for

• T finite: you obtain the value function in the present V T .
• T = ∞: a break criterion is satisfied up to a given tolerance,
usually related to the change of the value function or the basis
coefficients from one iteration to the next.

III Simulation:
6. Simulate the system dynamics by solving the Bellman equation (6.2)

iteratively forward in time. Starting with the initial condition xt = x̄,
the simulation solves a sequence of quasi-static optimization problems,
given the (approximate) value functions at every point in time. If
we fitted the policy functions in the earlier steps, we can use these
directly to simulate the system dynamics. In the stochastic case, we can
simulate using expected draws as a proxy, and then also simulate large
sets of truly random paths and determine distributional properties.

In the case where T is finite, we have to store all of the value function
V 0, ..., V T . In the case where T = ∞, we have an autonomous problem and
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we usually store only the current and the previous value function. We keep
track of the last iteration’s value function so that the break criterion can
evaluate changes from one iteration to the next. In the case of an infinite
time horizon, s is not the time to go, but simply counts the iterations starting
from our initial guess.

In the one dimensional deterministic setting, simple numerical optimization
algorithms solve the static optimization problem in step 3 (right side of equa-
tion 6.2), conditional on a given value of x and the function V s−1. In a higher
dimensional stochastic setting, this static optimization problem in itself may
require sophisticated methods. We do not discuss those methods, merely
assuming that each of the static problems can be solved, given x and V s−1.
In application, we would usually rely on a freely distributed or commercial
solver for the maximization step.

6.2 Approximating a function

Even if we knew the function V s−1, it would rarely be the case that we
could find a closed from solution for function V s. Assume we cannot find a
closed form solution but want to solve the problem exactly (up to numerical
precision). Then, we would have to solve the maximization problem for every
x ∈ X and store the optimation result, i.e. the value of the function V s, for
every point. Given X ⊂ IR is uncountable, this procedure is infeasible. As
you might know from algebra, we can approximate continuous functions on
a compact support X ⊂ IR arbitrarily closely by a (countable) sequence of
polynomials. In general, there are different countable basis of function spaces.
Let us denote a sequence of orthonormal15 basis functions by ϕ0, ϕ1, ϕ2, ... .
Then, every function f in the corresponding space can be written as

f =
∞∑
i=0

c∗iϕi

15An orthonormal basis satisfies
∫
X
ϕi(x)ϕj(x)dx = δi,j , where δi,j is the Kronecker

symbol: unity if i = j and zero otherwise. It is a set of properly normalized orthogo-
nal functions. The integral over the two functions (the inner product) can also carry a
weighting function.
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with coefficients in IR satisfying16

c∗i =

∫
X

ϕi(x)f(x)dx . (6.4)

This simple formula for the coefficients relies on the orthonormality of the
basis functions. A countably infinite series is still too much to keep track
of. We therefore resort to a finite subset of the basis. In addition, we have
to find an efficient way of dealing with the integration in equation (6.4).
A simple but effective approach replaces the integral by a sum, evaluating
both functions only at a finite set of points, the so-called interpolation nodes
x1, ..., xJ . Then, we obtain the approximate formula

f ≈
N∑
i=0

ciϕi with ci =
J∑

j=1

ϕi(xj)f(xj) = Φi
′f , (6.5)

where Φi ≡ (ϕi(x1), ..., ϕi(xJ)) and f ≡ (f(x1), ..., f(xJ)) are (column) vec-
tors of numbers: they contain the value of the functions at the interpolation
nodes. The equation for the coefficients ci replaces the integral over a com-
pact interval with a dot product of two vectors. While the integral is the
inner product on the function space, the dot product is the inner product
on our approximating vector space. However, for arbitrary choices of the
interpolation nodes x1, ..., xJ , the vectors Φ0,Φ1, ...,ΦN will no longer be
orthogonal. Section 6.4 discusses a particular set of basis functions (Cheby-
chev polynomials) and the corresponding set of nodes (Chebychev nodes)
for which the vectors Φ0,Φ1, ...,ΦN remain orthogonal. If they remain also
orthonormal, we obtain the vector of basis coefficients as

c = Φ′f , (6.6)

where Φ = (Φ0,Φ1, ...,ΦN). If the basis vectors are only orthogonal, but not
normalized to unity, the correct formula for the coefficients will also include
a weight.

16The ∗ on the coefficients distinguishes the exact coefficients from the coefficients ci
that we will use in our numeric approximation below. More generally, we have to assure
that the function we want to approximate lies in some Hilbert space (a Banach space with
an inner product), and the integration is the inner product. In particular, the integration
can involve an additional weighting function.



6.2 Approximating a function 139

We pause to emphasize the relation between the functions ϕi and the vec-
tors Φi. In the value function approximation, we fit the value function V s

to the solution of the maximization problem on the right hand side of the
Bellman equation (6.2). Here, the vector f corresponds to the solution of
the Bellman equation at the interpolation nodes. We use the vectors Φi to
find the coefficients of the basis functions ϕi, given only the finite vector of
values at the interpolation notes (of f or the maximization problem). We use
the functions ϕi whenever we need to evaluate the approximated function
between different interpolation nodes.

We now discuss the value function approximation in more detail. We also
show a parallel between the function fitting procedure and an OLS estimator.
We begin by choosing a sequence of J points, our interpolation nodes, x0,
x1, ...xJ−1 on an interval [a, b]; x0 = a and xJ−1 = b. The subscript here
identifies the node; it is not a time index. We have, or we generate, the value
of the function that we seek to approximate, at each of these nodes. We
also choose N basis functions ϕi (x), i = 0, 2..., N − 1. We approximate the
function of interest as a linear combination of these basis functions, evaluated
at the nodes. Figure ?? illustrates the procedure. The graph of the function
that we wish to approximate is the solid curve, shown as f (x). For the
time being, we take as known the value of this function, f (xj), at each node
j = 0, ..., J − 1; the heavy dots represent those values. The objective is to fit
a curve through those values. One such curve is shown as f̂ (x).

Given the values of f (xj) and the basis functions ϕi (x), the curve-fitting

problem is to minimize the distance between the estimated values, f̂ (xj),
and the observed values, f (xj). Define

f̂ (x0)

f̂ (x1)
...

f̂ (xJ−2)

f̂ (xJ−1)

 =


ϕ0 (x0) ϕ1 (x0) · · · ϕN−2 (x0) ϕN−1 (x0)
ϕ0 (x1) ϕ1 (x1) · · · ϕN−2 (x1) ϕN−1 (x1)

...
...

. . .
...

...
ϕ0 (xJ−2) ϕ1 (xJ−2) · · · ϕN−2 (xJ−2) ϕN−2 (xJ−2)
ϕ0 (xJ−1) ϕ1 (xJ−1) · · · ϕN−1 (xJ−1) ϕN−1 (xJ−1)




c0
c1
...

cN−2

cN−1

 ,

or using matrix notation
f̂ = Φc

where f̂ is J × 1 vector of estimated values of f , evaluated at the J nodes;
Φ is an J × N “interpolation matrix”; and c is the N × 1 vector of “basis
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Figure 2 shows sketches the interpolation of a function f evaluated at nodes x1 to xn by
a function f̂ that is spanned by a finite set of basis functions.

coefficients”. Define f as the J × 1 vector with j’th element the known
value f (xj). For J ≥ N , the vector c that minimizes the Euclidean distance

between f̂ and f is the familiar Ordinary Least Squares estimator

c =(Φ′Φ)
−1

Φ′f .

The inverse exists because of the assumption that the basis functions ϕi are
linearly independent, and J ≥ N . Practitioners often choose J = N , so that
c = Φ−1f . With J = N , f̂ = f , so the approximation equals the true value
of the function at the nodes; in general, the approximation does not equal
the true value of the function for a value of x other than a node.

Denote ϕ (x) as the N dimensional row vector of functions with i’th element
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ϕi (x). Note again the important distinction: ϕ (x) is a vector of functions,
whereas the i’th column ofΦ is a vectorΦi of values ϕi (xj) for j = 0, ..., J−1.

The approximation of the function f (x) is f̂ (x) = ϕ (x) c.

6.3 Approximation and value function iteration

For the application at hand, consider the problem once the nodes and the
basis functions have been chosen. Here V s, rather than f , is the function that
we want to approximate. At s = 0 we solve the problem on the right side of
equation (6.3) for each of the nodes, resulting in the J values (not functions)
V 0 (xi), i = 0, 2..., J − 1, which we denote in vector form as V0. We obtain
the basis coefficients as above, yielding c0=(Φ′Φ)−1Φ′V0. The superscript
0 identifies these as the basis coefficient at the 0 iteration, i.e. at the final
stage of the problem. Our estimate of the function V 0 (x) is V̂ 0 (x) = ϕ (x) c0.
We now proceed iteratively, at each stage replacing the true but unknown
function V s−1 with its approximation V̂ s−1 (x) = ϕ (x) cs−1. For example, at
stage s, given cs−1, we solve

Vs
j ≡ max

a

{
U (a, xj) + βϕ (g (a, xj)) c

s−1
}

for each each of the J nodes xj, j = 0, 2..., J − 1. At stage s = 0 we can
claim that we know the values of V 0 (xj), subject to the limits of numerical
accuracy. At stages s > 0, matters are slightly different. The state s > 0
problem is conditioned on the estimate, rather than the true value, of the
s − 1 value function. Therefore, we have only estimates V s (xj), not the
actual value V s (xj). We write this estimate for the values at the nodes as
the vector Vs. The stage s basis coefficients are cs=(Φ′Φ)−1Φ′Vs. Our
approximation of the value function at stage s is V̂ s (x) = ϕ (x) cs; if J = N ,
then V̂ s (xj) = Vs

j .

By using approximations, we replace the difficult problem, at each stage, of
finding a function, with the considerably simpler problem of finding a vector
of coefficients. Rather than having to store functions in memory, we only
have to store vectors of coefficients. Note also that interpolation matrix, Φ,
does not vary over stages. That matrix depends only on our choice of basis
functions and of nodes, so we need to compute the matrix (Φ′Φ)−1Φ′ only
once. Moreover, in the case where the basis vectors Φi are orthogonal, the
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matrix Φ′Φ is a diagonal matrix and we can do without matrix inversion. It
the basis vectors are orthonormal, we are back to equation (6.6).

At each stage we obtain the J values

asj = argmax
{
U (a, xj) + βϕ (g (a, xj)) c

s−1
}
.

It is important to note that, even if the initial condition for x equals a node,
optimal behavior likely causes the next-period state variable to lie between
nodes. Therefore, we need the function approximation V̂ s (x) = ϕ (x) cs

rather than just the vector Vs
j . Moreover, for implementing the forward

sweep we apply the sequence of optimal control rules. The value of the state
variable in a given period will generally not coincide with a node. Therefore,
we need the optimal control off the grid points. We have two options. First,
we estimate the control rules using the same procedure as above. At stage
s, having calculated the J values of the optimal control, each corresponding
to a node, we have the vector as. If we choose to use the same interpolation
matrix (as is often done), we approximate the stage s optimal control rule as
ϕ (x)ds, where ds = (Φ′Φ)−1Φ′as. Second, we can simply rely on the stored
value functions in the forward sweep and re-solve the optimization problem
for the (single) exact value of the state in that period. In either of the two
cases, we will generally pass information about the optimizing controls as as
initial conditions into the optimization problem of the next iteration s+ 1.

6.4 Choosing a basis functions and interpolation nodes

A natural choice would is the “monomial basis”ϕi (x) = xi−1, i = 0, ..., N −
1, and to space the nodes equally over the interval [a, b]. These choices
lead to a poor approximation in many cases. The interpolation matrix Φ
induced by the monomial basis is known as the Vandermonde matrix, a
famously “ill-conditioned” matrix. This sensitivity to numerical mistakes is
ofter measured by a so-called condition number.17 With J = N , the vector
of basis coefficients cs is the solution to Φcs= Ṽ

s
. Because Ṽs is the result

of approximations at previous stages, it contains “errors”, in the sense that

17For the linear system Ay = b, the condition number of the matrix A provides an upper
bound of the elasticity of the norm of the solution, y, to the the norm of the data, b. For
the Vandermonde matrix this condition number grows large with N , implying that a small
error in b may lead to a large error in y.
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it does not equal the true value of the program at a particular stage and
particular vector of states. If Φ has a high condition number, as with the
Vandermonde matrix, errors increase with iterations; the error in Ṽs leads
to a larger “error” in cs, increasing the error in Ṽs+1, and so on. In addition,
the condition number of the Vandermonde matrix increases with N . It would
seem that a higher degree polynomial approximation (increasing N) would
increase the accuracy of the approximation. However, with the monomial
basis, the higher condition number associated with larger N may cause the
accuracy of the approximation to fall with N .

A more suitable polynomial bases is given by the Chebychev polynomials (of
the “first kind”). It is convenient to change the units of the state variable,
replacing x with

z =
2 (x− a)

b− a
− 1,

so z ranges over [−1, 1] as x ranges over [a, b].18 The Chebyshev functions,
Γi, i = 0, 1, ...N − 1 are defined by19

Γi(z) = cos[i arccos(z)], z ∈ [−1, 1] .

We can generate these polynomials recursively by defining

Γ0 (z) = 1, Γ1 (z) = z

and

Γi (z) = 2zΓi−1 (z)− Γi−2 (z) .

For example, we find

Γ2(z) = 2z2 − 1 , Γ3(z) = 4z3 − 3z ,

Γ4(z) = 8z4 − 8z2 + 1 , Γ5(z) = 15z5 − 20z3 + 5z .

As these examples suggest, the even polynomials are symmetric around zero,
while the uneven polynomials are antisymmetric. Figure 3 graphs the first
five Chebychev polynomials. The polynomial Γi has i zeros which lie in the

18The so-called shifted Chebychev polynomials (of the first kind) are defined on [0, 1] as
Γ∗
i = Γi(2z − 1), z ∈ [0, 1], where Γi are the Chebychev polynomials as we define them

below.
19Observe the property Γi(cos θ) = cos(iθ), θ ∈ [0,Π].
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Chebychev Polynomials

Figure 3 shows the first five Chebychev Polynomials Γ0, ...,Γ4.

interval (−1, 1). They are given by

zj = cos

(
j + 1

2

i
π

)
, j = 0, 1..., i− 1. (6.7)

It turns out that choosing these zeros as interpolations nodes minimizes
the maximal distance between a function and its Chebychev approximation.
Therefore, the zeros in equation (6.7) are called Chebychev nodes.

The left hand side of Figure 4 shows how badly Chebychev polynomials ap-
proximate functions when using equidistant interpolation nodes. We observe
that the more basis functions and nodes we use, the further off is the ap-
proximation close to the bounds. Note that, for equidistant nodes, the basis
functions Γ0,Γ1, ...,ΓN−1 are no longer orthogonal. In contrast, if we use the
N zeros of the Nth order polynomial given in equation (6.7) as interpolation
nodes, we obtain an orthogonal set of basis functions and the approximations
shown on the right hand side of Figure 4. These approximations seem to do
particularly well when approximating a smooth function (top), and still some-
what alright when approximating a step function (bottom). The combination
of Chebyshev nodes and Chebyshev polynomials produce a well-conditioned
interpolation matrix Φ. This matrix is orthogonal, i.e. Φ′Φ is diagonal,
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Figure 4 shows how the Chebychev polynomials Γ4 (dark green), Γ12 (orange), and Γ20

(cyan) approximate two different function (dark blue) for equidistant interpolation nodes
(left) and Chebychev interpolation nodes (right). In the upper row, the polynomial ap-
proximate the smooth Runge function f(z) = 1

1+25z2 (dark blue) and do better than when
approximating the discontinuous Heaviside function in the lower row.

making it possible to accurately and cheaply compute cs= (Φ′Φ)−1Φ′Ṽs.
As we observed already in equations (6.5) and (6.6), the matrix inversion
boils down do a simple matrix multiplication, and a normalization factor
because Chebychev polynomials are not normalized to unity.

We can employ the cosine representation of the Chebychev polynomials (see
observation in footnote 19) to calculate the matrix elements with J = N as

Φij = Φi(xj) = Γi−1(zj) = cos

(
i
j + 1

2

J
π

)
i=0, ..., N − 1; j=1, ..., J − 1.

The diagonal matrix Φ′Φ gives us the normalization weights in front of the
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sum when calculation the coefficients20

c0 =
1

N

J∑
j=1

Φijf(xj) and ci =
2

N

J∑
j=1

Φijf(xj) .

6.5 Higher dimensional state space

The previous methods generalize to the multi-dimensional case. We use the
basis functions and interpolation nodes discussed above in each dimension,
and construct a tensor basis for the product space. Approximation tech-
niques analogous to the one-dimensional case apply. Now we have to solve
a multivariate maximization problem on the right hand side of the Bellman
equation for every point on a multidimensional grid, which makes the prob-
lem computationally more expensive. We briefly discuss the case for two
states.

Suppose that we want to approximate a function of two variables f(x, y)
where x ∈ Ix ⊂ IR and y ∈ Iy ⊂ IR. We approximate the twodimensional
function on the Cartesian product I ≡ Ix×Iy = {(x, y) |x ∈ Ix and y ∈ Iy}.21
We choose a set of univariate basis functions on each of the intervals, ϕx

ix ,
ix = 1, 2...Nx−1 and ϕy

iy
, iy = 1, 2...Ny−1. We obtain a basis on the product

space using the so-called tensor basis

ϕix,iy(x, y) = ϕx
ix (x)⊗ ϕy

iy
(y) for all ix, iy.

We can think of the tensor product as a bilinear multiplication of two vec-
tor space.22 Here, the multiplication is either that of two functions, i.e.,
Chebychev polynomials, or of values, i.e., Chebychev polynomials evaluated
at particular values. The reason why we do not write the tensor product

20Apart from the normalization factors, inserting the cosine back into the sum shows
that we essentially face a discrete cosine transfom of f(cos(θj)).

21In general, we might be more interested in particular combinations of the states than
in others, e.g. low capital stock might not come with high CO2 concentrations. However,
for the described function fitting procedure we need a rectangular set. If we have to be
parsimonious in the amount of nodes, it is worthwhile considering to approximate a set of
normalized variables on the rectangular grid rather than the actual states.

22Bilinearity is a
(
ϕx
ix
(x)⊗ ϕy

iy
(y)
)

=
(
aϕx

ix
(x)
)
⊗ ϕy

iy
(y) = ϕx

ix
(x) ⊗

(
aϕy

iy
(y)
)

for

r ∈ IR,
(
ϕx
ix
(x) + ϕx

lx
(x)
)
⊗ϕy

iy
(y) = ϕx

ix
(x)⊗ϕy

iy
(y)+ϕx

lx
(x)⊗ϕy

iy
(y), and the analogous

relation for an addition of two Chebychev polynomials in the second space.
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as a simple multiplication is because the two polynomials live on different
spaces. However, for practical purposes we can think usually think of evalu-
ating the tensor products point by point dealing simply with multiplication
of numbers. We approximate the function f by the estimate f̂ (x, y)

f̂ (x, y) =
∑
ix,iy

cix,iy ϕ
x
ix (x)⊗ ϕy

iy
(y) . (6.8)

If we evaluate the function at a given point, then each summand is simply
the product of the coefficient, the value of the basis function for x, and the
value of the basis function for y. Using a particular tensor notation, equation
(6.8) is sometimes written as

f̂ (x, y) = [ϕx(x)⊗ ϕy(y)] c, (6.9)

where ϕx (x) and ϕy (y) are, respectively, Ny and Nx dimensional (row) vec-
tors of basis functions, with elements ϕx

ix and ϕy
iy
; and c is a N ≡ NxNy

dimensional column vector of Chebychev coefficients.23 Once we evaluate the
Chebychev polynomials at a given set of nodes, equation (6.9) has a straight
forward interpretation as the Kronecker product of two matrices (see below).

In order to estimate the coefficients, we evaluate the functions f and ϕix,iy at
a finite set of gripoints

(
xjx , yjy

)
, jx = 0, 1, ..., Jx − 1 and jy = 0, 1, ..., Jy − 1.

If we use Chebychev functions for the basis, we also use Chebychev nodes on
Ix and Iy to construct a rectangular grid on I. We denote Φx

jx,ix = ϕx
ix(xjx)

to obtain matrices Φx and Φy, interpolating the vectors of basis functions.
We assume Nx = Jx and Ny = Jy. Once we replace the basis functions by
their values on the grid, we can write the expression in the square brackets
in equation (6.9) using the Kronecker product. The Kronecker product of

23Note that c is not of the dimension Ny +Nx. We do not simply apply one part of the
c vector to the basis function in the x-space and the other part to the basis vectors in the
y-space. General basis functions are combinations of basis functions in both dimensions;
there is a coefficient in c for each such combination.
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the matrices Φx and Φy is defined as24

Φx ⊗Φy =


Φx

0,0Φ
y . . . Φx

0,Ny−1Φ
y

...
. . .

...

Φx
Nx−1,0Φ

y . . . Φx
Nx−1,Ny−1Φ

y



=



Φx
0,0Φ

y
0,0 Φx

0,0Φ
y
0,1 . . . Φx

0,Ny−1Φ
y
0,Ny−1

Φx
0,0Φ

y
1,0 Φx

0,0Φ
y
1,1 . . . Φx

0,Ny−1Φ
y
1,Ny−1

...
...

...
...

Φx
Nx−1,0Φ

y
Ny−2,0 Φx

Nx−1,0Φ
y
Ny−2,1 . . . Φx

Nx−1,Ny−1Φ
y
Ny−2,Ny−1

Φx
Nx−1,0Φ

y
Ny−1,0 Φx

Nx−1,0Φ
y
Ny−1,1 . . . Φx

Nx−1,Ny−1Φ
y
Ny−1,Ny−1

(6.10)

With this representation of the tensor product, equation (6.9) is a straight
forward multiplication of an N × N matrix with an N dimensional column
vector of basis coefficients. Check that this multiplication indeed reproduces
the function values according to equation (6.8) at the gridpoints.25

For an interpolation of f according to equation (6.8), we need to estimate the
basis coefficients. Fortunately, we only have to invert the individual matrices
in each dimension and not, e.g., matrix (6.10). We find the coefficients in
the above tensor notation as

c = [Φx −1 ⊗Φy −1]f

or spelled out

cix,iy = wix,iy

∑
jx,jy

f(xjx , yjy)ϕ
x
ix(xjx)ϕ

y
iy
(yjy). (6.11)

where wix,iy is the inverse of the norm of the corresponding basis vector. Let
wx

ix = 1/
∑

jx
Φx

ix,jxΦ
x
jx,ix = 1/(Φx

.,ix
′Φx

.,ix) be the norm of the ixth basis
vector on Ix, and analogously for the basis vectors on Iz. Then wix,iy =

24We use the same symbol for the tensor product and the Kronecker product. More
precisely, the Kronecker product of the two matrices yields a particular representation of
the tensor product. Similar to an outer product of two vectors producing a matrix, the
Kronecker product produces and N×N dimensional tensor from the two original matrices.

25The matrix representation (6.10) of the tensor product in equation (6.8) is very mem-
ory intensive for higher dimensional state spaces.
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wx
ix w

y
iy
. For Chebychev polynomials we have

wix,iy = (2− δix,0)(2− δiy ,0)/(NxNy) .

We can verify formula (6.11) for the Chebychev coefficients by checking

f
(
xjx , yjy

)
=
∑
ix,iy

cix,iy ϕ
x
ix (xjx)ϕ

y
iy

(
yjy
)

=
∑
ix,iy

wix,iy

∑
lx,ly

f(xlx , yly)ϕ
x
ix(xlx)ϕ

y
iy
(yly)

 ϕx
ix (xjx)ϕ

y
iy

(
yjy
)

=
∑
lx,ly

f(xlx , yly)
∑
ix

wixϕ
x
ix(xlx)ϕ

x
ix (xjx)

∑
ij

wiyϕ
y
iy
(yly)ϕ

y
iy

(
yjy
)

=
∑
lx,ly

f(xlx , yly)δlx,jxδly ,jy = f
(
xjx , yjy

)
,

where we used orthogonality of the rows in the matrix of basis vectors to
transform the sums into the Kronecker δ. Figure 5 illustrates the interpola-
tion of a two dimensional function using the tensor basis as well as a variation
discussed below.
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Figure 5 shows an interpolation of the 2-dimensional function f(x, y) = 1
1+25(x∗y)2 , de-

picted in the upper left corner. In the upper right corner we depict the function evaluated
over the grid of 5x5 Chebychev nodes, and linearly interpolated between these nodes.
The middle row shows the approximation using 5 Chebychev polynomials (and nodes) in
each dimension (left), and using 10 Chebychev polynomials (and nodes) in each dimension
(right). Both interpolations use the tensor basis. In the lower row, the left graph uses 5
Chebychev polynomials in each dimension together with a complete basis, i.e., dropping
mixed orders higher than 5 (we kept the full set of interpolation nodes). The right graph
uses 5 Chebychev polynomials in each dimension, but dropped the highest order term
proportional to Γ4 ⊗ Γ4 from the tensor basis.
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An analogously constructed tensor basis with a Chebychev interpolation
scheme works for any dimension of the state space. However, we have to
solve the maximization problem at every point on the grid of interpolating
Chebychev nodes. Using 10 nodes in n dimensions implies that we solve the
maximization problem at 10n nodes. A function iteration with three dimen-
sions and a thousand nodes dimensions seriously challenge a PC. Doubling
the dimensions to six makes the problem intractable without very efficient
programming, node reductions, or heavy parallelization over nodes. The al-
gorithm is particularly suitable for parallelization over multiple processors
because we can independently solve the maximization problem at different
gridpoints. However, given the exponential growth of processor time in the
dimension, even parallization does not solve what is known as the curse of
dimensionality. The tensor basis contains the product of the highest order
polynomials in all dimensions. Dropping all products of basis functions that
have a joint order higher than that of the highest order univariate Chebychev
polynomial, we obtain what is known as a complete Chebychev basis. Some
algorithms, in particular Smolyak’s algorithm, suggest the use of sparser grid
that only grow polynomially in the dimension of the state space.

6.6 Other considerations

Here we consider a series of related issues.

6.6.1 Uncertainty

As noted above, the power of dynamic programming, relative to an alterna-
tive such as nonlinear programming, is most evident with stochastic prob-
lems. Suppose that the stochastic equation of motion

xτ+1 = g(aτ , xτ , ετ )

replaces the deterministic equation of motion in the second line of equation
(6.1). Here, ετ is the time τ realization of an independently identically dis-
tributed random variable with known distribution. The dynamic program-
ming equation is now

V s (x) = max
a
Eε

{
U (a, x) + βV s−1 (g(a, x, ε))

}
.
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The approximation proceeds as above, except now we have to take expec-
tations at every stage. If ϵ is distributed continuously, Gaussian quadra-
ture presents an efficient approximation to the expectation integral. Gauss-
Legendre quadrature once more approximates a probability weighted integral
by a weighted sum. The L quadrature nodes and the L weights in the sum
are selected to match first 2L moments of the distribution∫

Z

zkp(z)dz =
L∑
l=1

wlx
k
l for k = 0, ..., 2L− 1 .

Then we approximate the expectation by

Eε

{
U (a, x) + βV s−1 (g(a, x, ε))

}
≈ U (a, x) + β

L∑
l=1

wlV
s−1 (g(a, x, εl)) .

Given an estimate of the value function at stage s− 1, V̂ s−1 (x) = ϕ (x) cs−1,
at stage s we obtain

Vs
j = max

a
U (a, x) + β

L∑
l=1

wlϕ (g (a, xj, εl)) c
s−1. (6.12)

We calculate the stage s basis coefficients cs as above, to obtain an estimate
of the stage s value function, V̂ s (x) = ϕ (x) cs, and proceed to stage s+1. A
useful trick to increase the efficiency of the value function iteration is first run
the iteration with only a few Gaussian quadrature nodes, e.g. three. The right
hand side of equation (6.12) is evaluated many times for the maximization
at every node. Therefore, a low number of nodes increases the iteration
significantly. Taking the resulting value functions as an initial guess for a
second run with more nodes usually converges very quickly. Moreover, this
way you can evaluate whether your paths or control rules still depend on the
number of Gauss-Legendre nodes in your approximation of the stochastic
distribution.

6.6.2 Approximation interval

The choice of the approximation interval [a, b] depends on the model specifics.
For example, in a renewable resource problem, the modeler probably knows
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the initial value of the stock, and should choose [a, b] to include that value.
If the horizon, T , is long enough that the researcher thinks that the stock is
likely to approach its steady state, then [a, b] should also include that value.
The steady state can be obtained without solving the dynamic problem,
merely by solving (typically numerically) two algebraic equations. The steady
state condition for the state variable, x = g(a, x), and the steady state of
the Euler equation, discussed in Chapter 1, comprise these two algebraic
equations. Sensitivity studies with respect to a and b help to determine
whether the interval of approximation has been chosen well.

A tighter interval usually gives a better approximation with less nodes. This
reasoning becomes important in a higher dimensional state space where the
number of nodes is expensive. With a finite time horizon, we can then also
decide to choose different intervals (and basis functions) for every time step,
tightly bounding the intervals around the relevant path. In a deterministic
problem, a tight interval around the relevant path can be very efficient and
is generally less problematic. In a stochastic problem, however, we have to
be careful not to tighten the interval too tightly around an expected path. In
general, stochasticity can lead us along many path in the state space and we
want to have an interval that is large enough to capture a reasonable large
set of random paths. We have to be particularly careful with tightening the
bounds, if the expected value might be influenced significantly by payoffs for
low probability events that are further astray from the expected path. Again,
a sensitivity analysis with respect to the interval bounds is generally a good
idea.

Finally, convergence in real life is, unfortunately, more troublesome than the
theory generally suggests. Trying different intervals can also help to over-
come convergence problems, sometimes merely because it makes the finite
series of Chebychev polynomials better suited to approximate your actual
value function. In other cases, your equation of motion might imply that the
evaluation of ϕ (g(a, xj, εl)) lies outside of the actual interval bounds. This
situation can happen under uncertainty and is very likely under uncertainty
for some of the far out Gauss-Legendre nodes. Then, a careful choice of
the intervals can help to reduce the amount of evaluations that take place
outside of the approximated interval, where the quality of the approxima-
tion generally deteriorates rapidly. Lastly, in the multi-dimensional setting,
different states interact in the economic problem as well in there equation of
motions. In the value function iteration algorithm we evaluate all combina-



6.6 Other considerations 154

tions of states within the bounds of our approximation intervals. Sometimes
these combinations can lead to situation that are economically implausible
or highly unlikely and we should check that these situations might not imply
extreme controls that can potentially harm convergence of the algorithm.

6.6.3 More on infinite horizon problems

For an infinite time horizon, we start with an arbitrary initial guess for the
value function. However, when do we stop the iteration? Usually, we use a
break criterion that is either based on the change of the coefficients estimated
in the function approximation, or the maximal change of the value function
at a grid point. Once we found a value function approximation satisfying the
break criterion, we can derive the control rules and the time paths. Then,
we generally want to repeat the iteration taking the solution as an initial
guess but reducing the tolerance. Indicator for a reasonable tolerance is
when we find that control rules and time paths no longer change, or only
change marginally when reducing the tolerance further.26 A different test
for the quality of the approximation is to iterate the Bellman equation once
more on a much finer grid, only for a single step, check again the maximal
deviation of the value function. Finally, observe that for a given number of
basis function and interpolation nodes we cannot satisfy an arbitrarily low
tolerance criterion. In general, the actual value function, which is the true
fixpoint of the Bellman equation, lies outside of the space of funtions we can
approximate using our basis functions.

We can accellerate the infinite time horizon algorithm significantly by using
what is known as modified policy function iteration or “Howard’s method”.
The most costly step in every value function iteration is the maximization.
We can think of the value function iteration as follows. For a given value
function approximation, we solve for the optimal policies. For a given policy-
solution to the maximization problem, we fit a new value function to the right
hand side of the Bellman equation. Now assume that the policy choice a∗

would indeed be optimal. Would the new fit of the value function also give us
the correct value function? No. Assume you would indeed know the correct
policy rule (or value at every gridpoint). If you start with an arbitrary guess
of the value function, but fix the policy to its optimimum, you would face

26Note that time path often stop changing before the control rules do.
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the following iteration in s

V s+1 (x) = U (a∗, x) + βV s (g(a∗, x)) . (6.13)

In general, if the actual Bellman iteration contracts to its true solution V ,
then also equation (6.13) will contract to V . Even if we are already close to
the optimal policy, we generally still need many iterations to get close to the
optimal value function. Moreover, an iteration according to equation (6.13)
with a (not necessarily optimal but) fix policy a∗ is computationally cheap
because we avoid the maximation. Policy iteration suggests that whenever
we solved the maximization step for a new policy a∗, we first solve for the
corresponding value function before we engage in another optimization step.
Howard’s method, or modified policy iteration, suggests to iterate the inex-
pensive version of the “Bellman equation” (6.13) a few times after every true
iteration of the maximizing Bellman equation. That way we contract the
value function closer to our new policy before we invest into optimizing our
policy variables again.27 A related method suggests to only re-optimize the
policy for a random draw of nodes in every iteration.

6.6.4 Various

Non-autonomous problems. So far our payoffs and our equation of mo-
tion did not depend on time explicitly, i.e. the problem was autonomous. For
a problem with a finite time horizon, the exact same solution algorith ap-
plies to non-autonomous problems, only that the transistion equation or the
payoff function now depends on s. With an planning horizon, we can solve
a non-autonomous problem by making time a state variable. Then every
iteration solves the problem for all times, or more precisely at the interpo-
lation nodes in the time dimension. Once the function iteration terminates,
we have a value function that we can evaluate for any period and all (other)
states. This value function interpolates time smoothely, even if we only have
a solution for the time step that we applied to our equations of motions. If

27Be aware that the break criterion has to incorporate the difference between “Howard
loops” and maximizing loops. We will generally construct the break criterion based on
differences only between maximization loops. But these differences can be larger now for
the same approximation quality without using Howard’s method. Rather than using a
fixed number of “Howard loops” we can also use a second break criterion for switching
back from an iteration according to equation (6.13) to a maximizing iteration.
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we make the time step a model parameter, we can still solve the problem for
any desired time step. Usually, we expect that a larger time step increases
the speed of convergence.

Convergence. Also in cases where theory proves a contraction mapping
(see Appendix to chapter 1xxx), the numerical algorithm might not converge.
The theory generally does not take into account that we only use a finite
subset of the basis functions that would span the true function space an
that we use a finite approximation interval, even if stochastic equations of
motion will usually carry us out of this interval.28 We discussed in the section
on the approximation intervals how a careful choice of the interval bounds
can sometimes help in achieving convergence. Another trick that sometimes
helps to stabilizy the function value iteration is damping. Here we fit the
new Chebychev coefficients as above. However, into the next iteration we
pass on a convex combination of the new coefficients and the coefficients
calculated in the previous iteration. In particular, if the function iteration is
alternating damping can help us to converge to a better solution, or faste, or
to converge at all. Finally, we can sometimes perturb a paramter that relates
to the instability of the algorithm and only slowly increase of decrease the
parameter to the desired value. For example, if some parameter value relates
to the amount of gridpoints where (or the distance by how much) we jump
out of the approximation intervals, we can start setting it to a value that
ameliorates the approximation problem. Once we solved the problem, we can
take the resulting value functions as an initial guess to resolve the problem
with a value closer to the true parameter value, until we might be able to
solve the problem we are actually interested in and which was unstable for
an arbitrary guess of the value function.

The compecon toolbox. Miranda and Fackler (2002) ?? provide conve-
nient toolboxes in Matlab for solving dynamic programming problems. In
particular, they provide algorithms (commands) that create the fit the co-
efficients and evaluate the function approximation when using Chebychev
polynomials or splines. You can download the compecon toolbox from Paul
Fackler’s homepage. The command line argument

28Stachurski (?) has a nice discussion on “fitted value function iteration” where he
analysis the approximation step also in the theoretical fixpoint argument.
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fspace=fundefn(‘basetype’,n,a,b,order)

basetype ∈ {‘cheb’,‘spli’}, creates a structure that we called ‘fspace’ con-
taining the basis underlying the function approximation. The parameter n
determines the order of the basis functions. In a multidimensional application
it is a vector determining the order in each dimension. The approximation
interval is [a, b], where both endpoints are vectors in the multidimensional
case. The parameter ‘order’ is an optional argument that, in the case of
splines, determines the order of the interpolating spline (default is 3, and
‘lin’ instead of ‘spli’ produces a linear spline interpolation). The command
line

c=funfitxy(fspace,x,y)

finds the basis coefficients using the approximation structure ‘fspace’.29 Here,
x is a list of the nodes (rows contains the coordinates of one point, colums a
sequence of nodes) at which we evaluate the function, and y the corresponding
values.

The command line

x=funnode(fspace)

returns a vector (onedimensional case) or array structure (multidimensional
case) suggesting you the optimal interpolations nodes for the approxima-
tion structure fspace.These are Chebychev nodes for the Chebychev basis
and equidistant nodes for splines. You obtain the basis in matrix notation
evaluated at the point or vector of points x using the command line

B=funbas(fspace,x) ,

from which you find the approximate function value at x as

y=B*c .

Alternatively you can use the command

y=funeval(c,fspace,x)

to evaluates the function at the point(s) x. In particular, funeval also takes
parameters that permit the efficient evaluation of derivatives.

29The command funfitf(fspace,f) finds the coefficients directly if f is implemented as a
function.
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6.7 Other functional equations

We presented function approximation as a means of solving dynamic pro-
gramming equations, but the same methods are useful in many other appli-
cations. Consider the problem of finding the function f(x) that solves the
functional equation

h (x, f (x)) = 0.

We can approximate f (x) using f̂ (x) = ϕ (x) c, with ϕ (x) an n dimensional
row vector of basis functions. Given the interpolation nodes xj, j = 1, 2, ...n,
we can choose c to satisfy h (xi, ϕ (xi) c) = 0 at each node. This method
of solving functional equations is known as the collocation method. Equiv-
alently, we can find fi to satisfy h (xi, fi) = 0 and then choose c to satisfy
f = Φc, where the i’th element of f is fi and the i’th row of Φ is ϕ (xi).

Functional approximation is also useful for solving two point boundary value
(TPBV) problems, a system of differential equations arising is continuous
time optimal control problems. We discuss this problem in detail in Chapter
xx, and here merely indicate one approach to a numerical solution. For
problems with one state variable and one control variable, the necessary
conditions give rise to a TPBV problem consisting of a pair of differential
equations with a split boundary condition: we have one boundary condition
at the initial time, t = 0, and a second at the terminal time, t = T .

For example, consider the pair of differential equations

dx

dt
= h (x, y, t) and

dy

dt
= k (x, y, t)

with boundary conditions

x (0) = x0 and x (T ) = xT , given.

The functions h and k and the boundary value xT are obtained using the
necessary conditions to the optimal control problem, as explained in Chapter
xx, and the boundary condition x0 is data. Here we take the differential
equations and boundary conditions as given, and discuss the solution.

The solution consists of functions x (t) = H (t) and y (t) = K (t). The goal
is to approximate the functions H and K. As above, we choose a set of n
basis function, ϕ (t) and approximate H using ϕ (t) c and K using ϕ (t) q,
where c and q are n dimensional column vectors of interpolation coefficients.
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Substituting these approximants into the original differential equations, we
have

dϕ (t)

dt
c = h (ϕ (t) c, ϕ (t) q, t) and

dϕ (t)

dt
q = k (ϕ (t) c, ϕ (t) q, t) . (6.14)

For exposition, we choose n − 1 interpolation nodes. These range from 0
to T ; in terms of the notation above, a = 0 and b = T . We also have the
boundary conditions

ϕ (0) c = x0 and ϕ (T ) c = xT . (6.15)

Requiring that the pair of equations in 6.14 hold at the n − 1 interpolation
nodes results in 2 (n− 1) equations; these, plus the two equations in ?? com-
prise a system of 2n equations, which can be used to find the 2n interpolation
coefficients, the elements of c and q.

6.8 Finite Markov chains

So far, we considered a problem in which both the state and control spaces are
continuous. Here we discuss an alternative in which both of these sets consist
of a finite number of elements. The methods here are particularly useful in
stochastic problems, so we move straight to that setting. We denote the
finite set of states of the model by S = {x1, ..., xn}. The control (or policy)
variable can take on the values a ∈ {a1, ..., am} ≡ A. The policy function
maps the state of the system into a control: σ : S → A. We can represent
the policy function by an n-vector σ with elements σi = σ(xi).

Range management provides an example of a renewable resource application
of this setup. Suppose, as a discrete approximation, that rangeland quality
(measured by biomass of available grass) can take a finite number of values.
Rangeland quality is the state variable. Quality changes stochastically, and
depends in part on stocking rate (number of animals per unit of land). The
rancher can improve the quality of the land by applying a treatment (e.g.
fertilizer or herbicide), a 0/1 variable. The control variables are stocking
rate and the treatment decision. If there are m

2
possible stocking rates, then

aj, j = 1, 2, ...m, identifies an ordered pair; the first element is the stocking
rate and the second element is a 0/1 variable identifying whether the rancher
uses the treatment. Generalization to higher dimensional state variables, or
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additional controls, is straightforward, but of course increases the size of the
numerical problem.

We assume that the state variable follows a stationary Markov process: the
probability distribution of the next period state depends only on the current
state and the current action, not on the history of actions or calendar time.
The Markov assumption is quite flexible. We can allow for the possibility
that the probability of transition from state xi to xj depends on past values
of the state and/or the control, by increasing the dimension of the state
variable. For example, if the transition probability depends on both current
and lagged values of the state variable, we define a new state variable, the
ordered pair, x̃ ∈ S × S, where the first element equals the current value of
the (original) state variable and the second element equals its lagged value.
If x can take n possible values, x̃ takes n2 possible values. We express the
stochastic transitions, replacing the equation of motion, using a stochastic
kernel.

Definition 2 A function p : S × S → [0, 1] is a stochastic kernel if

1. p(x, y) ≥ 0 for all (x, y) ∈ S × S, and

2.
∑

y∈S p(x, y) = 1 for all x ∈ S.

For any given state x ∈ S, the stochastic kernel p(x, ·) defines a probability
distribution over the state space. We use the stochastic kernel to specify
the probability distribution of period’s state, given the current state (or a
distribution thereof).

In our dynamic programming application, the transition probabilities p(x, ·)
generally depend on the policy σ. Our model will usually characterize the
probability that the next period state is xj, if the current state is xi and we
choose policy ak. Given a policy function σ, we then obtain the probability
pσ(xi, xj) as the probability that the next period state is xj, if the current
state is xi and we choose policy σ(xi). Then, for any policy function σ we
have a stochastic kernel pσ. We can represent these stochastic kernels in
matrix form as

pσ =


pσ(x1, x1) . . . pσ(x1, xn)

...
. . .

...

pσ(xn, x1) . . . pσ(xn, xn)

 .
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In our case of a finite state space, a stochastic kernel corresponds to the
conditional probability of the next period’s state being y, given that the
current state is x. Let Xt denote the random variable characterizing the
system’s state in period t. Given the initial condition X0 = x̄ and the
stochastic kernal pσ, we generate a Markov chain (Xt)t≥0 of states by setting
X0 = x̄ and drawing

Xt+1 ∼ pσ(Xt, ·) (6.16)

for all t ≥ 0. We dedicate the remainder of this subsection to finding the
optimal policy σ∗.

As before, U (x, a) is the single period payoff, and β the discount factor. The
transition equation Xt+1 ∼ pσ(Xt, ·) replaces the deterministic or stochastic
difference equation from Section 6.2. The objective is to maximize

E0

∞∑
τ=0

βτU (xτ , aτ ) ,

subject to the transition probabilities of the states and the initial condition.
We assume that the time horizon is infinite, T = ∞, and that the problem
is autonomous. In this case, the value of being in state x0, denoted V (x0),
does not depend on calendar time. For an arbitrary initial condition, x, the
dynamic programming equation is

V (x) = max
a

{U (x, a) + βEx′V (x′)} , (6.17)

where x′ is the value of the state variable in the next period. The probability
of transition from a particular value of x to a particular value of x′ depends
on the choice of the current control a (policy function in equation 6.16). If
we knew the function V , the fact that there are a finite number of possible
values of the control variable makes it straightforward to solve the problem
in equation (6.17). The key is to find the function V (x). There are three
methods of solving this problem: value function iteration, policy function
iteration, and linear programming.

The value function iteration approach begins with an initial guess V0, an n
dimensional vector whose i’th element equals the initial guess of the value of
being in state xi. Given the guess Vs, we update the guess by solving

V s+1(x) = max
a

{U(x, a) + βEx′V s(x′)} ,
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for all x ∈ S. We stop the iterations when the sup norm ||Vs+1 − Vs|| is
less than a tolerance chosen by the modeler, or when the optimal decision at
any state does not change from one iteration to the next. This algorithm is
similar to that used in Section 6.2, except that here we store the estimated
values of the value function at every possible state, rather than approximat-
ing the value function using basis functions. A variety of methods speeds
convergence.

The policy function iteration begins with a guess of the policy function.
Denote the guess of the policy function at iteration s as the n dimensional
vector σs, whose i’th element gives the guess, at iteration s, of the optimal
action when the state is xi. Let Uσs denote the n dimensional column vector
of single period payoffs under policy σs; the i’th element being U (xi, σ(xi)).
The i’th row vector in pσs captures the probability distribution over next
period’s states, given the current system state is xi. For a given policy
function σ, the value of the program equals

Vs = Uσs + β pσsVs

⇒ Vs = [I−β pσs ]−1Uσs , (6.18)

where the i’th element of Vj is the value of the program when the current
state is xi and the planner uses the policy function σs. Given this guess of
Vj, we update our policy function setting

σs+1(x) = argmax
a

{U(x, a) + βEx′V s(x′)}

for all x ∈ S. This algorithm, unlike value function iteration, converges to
the optimal decision rule and value function in a finite number of iterations.
It requires solving the linear system (6.18) in each iteration.

The third approach uses linear programming. Denote byV the column vector
of values of the program, with i’th element equal to the value of the program
when the current state variable is xi. Denote the policy function using control
aj in all states by σ = aj, and Uaj

as the vector of values of the single period
payoff, given that the planner uses the control aj. The i’th element of Uaj

is
U(xi, aj). By optimality, it must be the case that

V ≥ Uaj
+ β paj

V.
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The right side of this inequality equals the vector of values of the payoff
(whose elements correspond to the different values of the state variable),
given that the planner uses action aj at every state. Of course, this action
need not be optimal at any state; hence, the inequality. We have m systems
of this form, one corresponding to each possible action. Stack the m vectors
Uσj

for all aj ∈ A to create the mn dimensional vector U and stack the m
matrices paj

to create the mn × n dimensional matrix P. Also denote 1 as
the n dimensional column vector consisting of 1’s, and I as the n dimensional
identity matrix. The system of inequalities can be written as

[1⊗ I]V ≥ U+β PV ⇒ [1⊗ I−β P]V ≥ U. (6.19)

The value of the program is the solution to the linear programming problem

min1′V subject to inequality (6.19).

6.9 Comments on Markov chains

Finite Markov chains provide a simple means of formulating a dynamic prob-
lem, while permitting a general description of stochastics: the probability
distribution of the next-period state can depend in any manner on the cur-
rent state and control. The main cost of this method is that it might be
necessary to use a large number of values of the state variable to describe the
problem with an acceptable degree of accuracy. If we need significantly fewer
nodes to approximate the continuous functions, then the methods discussed
in Section 6.2 probably provide a more efficient modeling strategy. However,
those models typically use a simple representation of stochastics, obtained
by making the equation of motion a function of a random variable. This
model restrics the manner in which the current state and control affect the
probability distribution of the state in the next period.

The analysis of the optimally controlled state also differs under the two ap-
proaches. Here, we restrict attention to the autonomous case. With contin-
uous action and state space, the approximation of the autonomous control
rule is ϕ (x)d, where ϕ (x) is the row vector of basis functions and d is the
column vector of basis coefficients used to approximate the control rule. The
state evolves according to

xτ+1 = g(xτ , ϕ (xτ )d,ετ )
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where ετ is the random variable. By taking many draws of the random
variable, we can use Monte Carlo methods to study the stochastic evolution
of the state, and to approximate, for example, the steady state distribution
and the probability that the state variable crosses some threshold.

With a finite Markov chain, we can calculate those kinds of probabilities
exactly, rather than by means of Monte Carlo experiments. Denote the
optimal policy function by σ∗. The ij’th element pσ∗ equals the probability
that the state transitions from xi to xj when the planner uses the optimal
action at state xi. Let the n-dimensional row vector qt represent a probability
distribution over S in period t. If we know the value of the state at time t,
then qt is a unit vector, consisting of 1 in the position of the known value of
the state, and 0’s elsewhere. The probability that the state transitions from
i to j in t periods is pσ∗ t; see problem 1. The equation of motion for the
probability distribution qt satisfies the linear difference equation

qt+1 = qtpσ∗ . (6.20)

For example, if we know, with probability 1, that Xt = xi, then equation
(6.20) returns the i’th row of pσ∗ as qt+1, the probability distribution of the
next period state variable.

An eigenvalue λ and a “right” eigenvector x solve pσ∗x = λx. An eigen-
value λ and a “left” eigenvector x solve xpσ∗ = λx. The sets of right and
left eigenvectors are not the same, but the sets of right and left eigenvalues
are the same. The matrix pσ∗ has a principal eigenvalue of 1: the largest
eigenvalue λ solving xpσ∗ = λx is λ = 1. Thus, there exists a vector q∞
that solves q∞pσ∗ = q∞. The vector q∞ is a steady state distribution: if the
distribution equals q∞ in the current period, then it remains unchanged in
each subsequent period. In general, there may be multiple steady states to
the difference equation (6.20). However, if there is a unique steady state (the
principal eigenvalue is of multiplicity 1), then the Markov chain is ergodic.
Such a chain asymptotically approaches its unique steady state distribution
from any initial distribution, including from a degenerate distribution, where
we know the value of the state. In the rangeland example, we can calculate
the long-run expected value of the rangeland. If it is optimal to perform
the “treatment” only when the rangeland falls below a critical level, we can
calculate the expected long-run frequency of the treatment.

If there are multiple steady state probability distributions, then the long-run
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probability distribution may depend on the initial probability distribution.
For example, if there are two steady state distributions, qA∞ and qB∞, then
there are three sets of values of x, say A,B,C. Degenerate probability dis-
tributions associated with initial conditions in set A approach the steady
state distribution qA∞, and those with initial conditions in set B approach
qB∞. Initial conditions in set C might transition to set A or to set B. We
can calculate the probability that the state moves from an initial condition
into a particular set, e.g., the probability that it moves from a point in set
C in the initial period, to either the set A or B. For example, suppose that
the pollution stock in a lake changes stochastically, depending on the cur-
rent stock and the level of emissions. Moreover, the expected decay of the
stock is high for small stocks, but low for large stocks. In this case, once
the stock is larger than a threshold it might be prohibitively expensive or
even infeasible to cause the stock to fall below this threshold (e.g. by reduc-
ing emissions). Chapter xx considers a deterministic version of this “shallow
lake problem”. In the stochastic version, under the optimal emissions pol-
icy, there may be two steady state distributions, corresponding to high and
low pollution stocks; denote these as qA∞ and qB∞. When the process is mod-
elled using a finite Markov chain, we can calculate these distributions and
the associated sets A,B,C described above. The set A is the set of initial
conditions from which the stock asymptotically approaches, with probability
1, the high pollution steady state distribution, and the set C is the set of
initial conditions from which the stock approaches the high pollution steady
state distribution with probability greater than 0 and less than 1. We can
also calculate the mean passage time, defined as the expected amount of time
it takes the stock to transit from a given initial condition, into a particular
set. The nature of the problem determines the type of comparative dynamics
experiments one is likely to undertake. In the shallow lake problem, we can,
for example, see how a change in the cost of emissions control affects the
probability distribution of the pollution stock.

6.10 An Application to the Integrated Assessment of
Climate Change

The problem replicates a stylized version of William (Nordhaus 2008) DICE
model as a recursive dynamic programming model. DICE is an open source
integrated assessment model. Basically, it is a Ramsey growth model that is
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enriched by emissions, pollution stock, and temperature related damages to
world GDP. Some of the key exogenous parameters in the original model are
time dependent. We omit the time of these parameters. In contrast to DICE,
this problem allows you to model uncertainty in a coherent way. Uncertainty
is persistent and affects decisions in every period. Uncertainty enters as an iid
shock on climate sensitivity, which characterizes the temperature response to
the radiative forcing caused by a doubling in atmospheric CO2 concentrations
with respect to the preindustrial level.30 The climate sensitivity parameter
is one of the key unknowns in modeling global warming because of several
feedback processes involved when translating CO2 increase into temperature
change. We have an annual time step and face an infinite planning horizon.
The model solves for the optimal expected trajectories of the climate economy
controlling for emissions and investment.

6.10.1 Welfare

We use the intertemporally additive expected utility standard model. It
evaluates scenarios by aggregating instantaneous welfare linearly over time
and aggregating linearly over risk states by taking expected values. Thus,
the social planner maximizes

U =
∑
t

βtLtu
(Ct

Lt

)
=
∑
t

βtLt

(
Ct

Lt

)ρ
ρ

= L1−ρ
t

∑
t

βtC
ρ
t

ρ

where Lt is the population size and β is the discount factor stemming from
the additional assumption of stationary preferences. The assumption of a
power utility function returns to us a constant elasticity of intertemporal
substitution. We can drop Lt in the welfare equation because it comes down
to a multiplicative constant of welfare having no real effects. Anticipating
that the climate-economy equations introduced in section 6.10.2 will depend
on the two state variables capital Kt and CO2 pollution stockMt and will be
controlled by the consumption-investment decision and the abatement rate
µt we can write the according dynamic programming equation as

V (Kt,Mt) = max
Ct,µt

Cρ
t

ρ
+ β V (Kt+1,Mt+1) ,

30Obviously the iid nature is not quite realistic but saves us additional state variables.
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with control variables consumption ct and emission control rate µt. Because
we will assume a constant population, we can substitute per capita consump-
tion ct by aggregate global consumption Ct.

31

6.10.2 The Climate Economy

The decision maker maximizes his value functions under the constraints of
the following stylized model of a climate enriched economy. The model is
largely a (very) reduced form of Nordhaus (2008) DICE-2007 model. All
parameters are characterized and quantified in table ?? on page 354. The
economy accumulates capital according to

Kt+1 = (1− δK)Kt + Yt − Ct ,

where δK denotes the depreciation rate, Yt denotes net production (net of
abatement costs and climate damage), and Ct denotes aggregate global con-
sumption of produced commodities. Instead of trying to model the full car-
bon cycle, which would be very costly in terms of stock variables, we assume
an exponential decay of CO2 in the atmosphere at rate δM

Mt+1 =Mt (1− δM) + Et .

The variable Et characterizes overall yearly CO2 emissions. We use values for
Mt and Et characterizing CO2 only. However, at the given level of abstraction
a rescaled version ofMt could be thought of as representing greenhouse gases
in CO2 equivalents more generally. Emission are composed of industrial
emission (first term) and emissions from land use change an forestry B (which
are assumed to be constant)

Et = σ (1− µt) (AL)
1−κ Kκ

t +B

The constant σ specifies the emissions to GDP ratio and the control variable
µt is the abatement rate. The constant AL represents effective labor (tech-
nology level and labor). The product (AL)1−κ Kκ

t is the global gross product
(gross of abatement costs and climate damage). The net product is obtained

31The change results in an affine transformation of the value function that leaves the
decision problem unchanged.
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from the gross product as follows

Yt =
1− Λ(µt)

1 +D(Tt)
(AL)1−κKκ

t =
1−Ψµa2

t(
1 + b1Tt + b2T

b3
t

)(AL)1−κKκ
t

where

Λ(µt) = Ψµa2
t

characterizes abatement costs as percent of GDP. The parameter Ψ is the
cost coefficient and the cost is convex in the emission control rate µt. The
equation

D(Tt) = b1Tt + b2T
b3
t

characterizes the climate damage as percent of GDP depending on the tem-
perature difference Tt of current with respect to temperatures in 1900.

In the model, temperature is an immediate response to the radiative forcing
caused by the stock of CO2 in the atmosphere

Tt = st
ln Mt

Mpreind

ln 2
+
EF

η
. (6.21)

where st denotes climate sensitivity, i.e. the temperature response to a dou-
bling of CO2 in the atmosphere with respect to preindustrial concentrations.
The second term in equation (6.21) represents external forcing that is caused
by other greenhouse gases. The model uses a climate sensitivity of st = s ≈ 3.
Finally the system is bound by the following constraints on the control vari-
ables consumption

0 ≤ Ct ≤ [1− Λ(µt)]Y
∗
t

and abatement

0 ≤ µt ≤ 1 .

The constraint on consumption uses gross output less climate damages Y ∗
t =

(AL)1−κKκ
t

1+D(Tt)
. Rewriting the constraints in terms of abatement expenditure Λt
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rather than the abatement rate µt = (Λt

Ψ
)

1
a2 makes the ‘right hand side’

constraints linear in the controls

Ct+ ΛtY
∗
t ≤ Y ∗

t

Λt ≤ Ψ .

As linear constraints are preferred by numerical solvers, we actually use Λt

rather than µt as the control variable in the numerical implementation of this
model.

6.10.3 The Code

The model is an implementation of the abstract procedures we discussed
in the class when introducing some of the mechanics of solving numerical
problems. For evaluating the Chebyshev polynomials we use the package by
?. The same is true for calculating the optimal nodes where to approximate
the value function and for fitting the new coefficients. You can download the
package from32

http://www4.ncsu.edu/ pfackler/compecon/toolbox.html
The code has the option to use ‘damping’ as discussed above: rather than
employing the new coefficients cnew for the subsequent iteration we use a
convex combination of the previous and the new coefficients c = (1−d)cnew+
dcprev. For d = 0 we are back to the standard procedure. If you use the
standard maximization routine in Matlab fmincon, you will probably not see
an effect of damping. However, if you use other feeware of commercial solvers
some of which are much faster than fmincon, you might observe different
convergence properties (e.g. when using knitro). The code also enables you
not to ‘force’ the new fit of the Chebychev function to exactly run through
the values generated at the nodes on the right hand side of the dynamic
programming equations. We can evaluate the function at more nodes, but
‘drop’ some of them when fitting the new coefficients. Thus, we then have
more evaluation nodes than coefficients and do a least square fit.33 The
algorithm that you can download from the course website approximately

32Of course you are happily invited to add the Matlab code for the according procedures
to the problem set rather than using the package...good exercise.

33? funfit routine used for aquiring the new coefficients automatically does a least square
fit when it receives more values than it has coefficients.
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works as follows:

File model-KM (main file)

• “run param-KM-DICE-initial” loads the parameters. These approxi-
mately correspond to the initial parameters of DICE in the initial year

• you set: topdir= ‘C: path to where you saved the model folder’ (change!)

• you can set “loadswitch” if you have initial values you want to use from
previous runs. For this purpose you have to go to the directory with
the intitial values and set loadswitch to 4 rather than 0

• defines the variables relevant for the function approximation, i.e. num-
ber of nodes, approximation intervals, damping, number of nodes to be
dropped

• creates the function space (fspace) used for the approximation and the
nodes used for evaluation (s)

• calls the function iteration procedure

• plots results

File: function-iterate-KM (does the actual work)

• Saves old values

• Iterates over all nodes doing the following

– solve the maximization problem on the r.h.s. of the DPE

– the outbounds stuff is all about calculating information that comes
up on the screen (and is also stored in .txt files) whether we
jumped out of the approximation interval in t + 1 - it is only
for informational purposes

• Fits the Chebyshev coefficients for the newly calculated values at the
different nodes

• Calculates by how much coefficients and function values have changed
from the old iteration and puts it out on the screen (together with
the information how many nodes jumped out of the approximation
interval).
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In the end you will have a folder created at the location that you specified.
Apart from the coefficient matrix and some other information it contains
plots of the value function, the control rules, and the time paths.

6.10.4 The Questions

1. Download and install (?) toolbox. Test that it is properly installed.
Download the model from the course website. Set your Matlab path to
include to folder where you have saved the model code.

2. Familiarize with the code and run the model as is. Which intervals
did you use for the value function iteration? How many nodes did the
predefined model run put on each dimension? Did the model run use
damping?

3. Go to the results folder and check out the plots. Do the optimal pol-
lution stock and the optimal capital stock increase or fall over time?
In which range does the capital stock move over the 300 depicted years?
Do you think the interval used for the value function approximation
contains the steady state level of capital?
Does the value function increase or fall in the capital and the pollution
stock?
Does the social cost of carbon increase or fall in the capital and the
pollution stock? Note that the social cost of carbon is measured in
units of capital.

4. Increase the number of nodes to 10 on both dimensions. What do you
find?

5. Leave the number of nodes at 10 and use the intervals [80, 220] and
[670, 920]. What do you find?

6. Set the intervals to [100, 180] and [670, 920]. Set the number of nodes
in both dimensions to 3. Comment out the current parameterization in
line 36 of model-KM-cert and use instead the parameterization called
param-KM-DICE-initial-doubleA. It is the same as the previous param-
KM-DICE-initial except that it doubles the effectivity of labor, which
happens in the full version of DICE after about 80 years. Run the
model.
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Is the CO2 stock increasing or decreasing over time? Relate the obser-
vation to your previous result with half the A value.

7. Increase the number of nodes in each dimension to 8. Run the model.
What to you find? Increase the number of evaluation nodes to 9 but
drop one node when fitting coefficients (i.e. set “nodetocoeff = [1 1]”).
Moreover, set damping to “damp=0.3”. Run the model. What do you
find?

8. Set damping and nodedropping back to zero. Change loadswitch to
“loadswitch=4” and go into the directory carrying the name of your
run with 3 nodes and double labor productivity. Chose 8 nodes on
every dimension. Run the model. What do you find?
What can you learn from this finding? (That question is not about the
graphs, which should look like in the earlier run...)

The main drivers of the full DICE model are the exogenous changes in pro-
ductivity (A) and abatement costs (Ψ) as well as an exogenous decline in
the carbon intensity of production (σ in the text and emint in the code).
These exogenous changes explain a large part of the differences that you see
in the plots that compare abatement rate, social cost of carbon, CO2 stock
and temperature to those of the original DICE model. I included a param-
eterization that halves the abatement cost as it would happen after about
80 years in DICE and a parameterization that puts both A and Ψ to the
levels after approximately 80 years in case you want to play with it. Another
shortcoming of the simplified two state model is that it does not capture the
delay in temperature increase.

6.11 Related literature

Section 6.2 is based primarily on Miranda and Fackler (2002), especially chap-
ter 6. That book is particularly valuable for practitioners, because it is in-
tegrated with a Matlab-based “toolbox” containing routines that implement
the methods discussed in the book, and many solved problems. Stachurski
(2009) ?? offers an excellent combination of a thorough treatment of the un-
derlying theory and a discussion including code in Python of the underlying
numerical implementation. Judd (199?) is also a valuable reference, contain-
ing additional methods and going deeper into some technical issues. Section
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6.8 is based primarily on Bertsekas (1976) and Bertesekas (200?). Parzen
(1962 – check for later editions) provides a good introduction to finite Markov
chains. The rangeland example is from Karp and Pope (1984).

6.12 Problems

1. Suppose that n = 2, i.e. the state takes two possible values. Let r
equal the probability of transition from state 1 to state 1 (i.e. remaining
in state 1) and let v equal the probability of transition from state 2 to
state 2. Write the state transition matrix for this example, p, and
show that p2 equals the state transition matrix whose elements give
the probability of transition from state i to state j in two periods.
Using an inductive proof, show that pt equals the transition matrix
whose elements give the probability of transition from state i to j in t
periods.

2. Approximate the 2-dimensional function f(x, y) = (1 + x)0.1 ln(1 + y)
on the interval [-1,1]. Do not use a toolbox, but use the formulas
discussed in this chapter. Use a tensor basis of Chebychev functions
and Chebychev nodes. Approximate the function first using only 3 and
then using 10+ basis function in each dimension (whatever number
larger or equal to 10 you like). Plot the original function and the two
approximations. Send me code and plots by email. Mark the resulting
Chebychev coefficients in your output.

3. Go over the problem described in Section 6.10 and answer the questions
in Section 6.10.4.
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7 The Maximum Principle and Pollution Con-

trol

The section introduces a wide-spread approach to intertemporal optimization
in continuous time. In economics it runs under the names “Maximum Prin-
ciple” and “optimal control theory”. A related approach in physics dates
back quite a bit longer and runs under “Hamilton’s canonical equations”.
The method is particularly convenient for optimization under certainty. It
translates the intertemporal optimization problem into a static optimization
problem and a set of ordinary differential equations. We will analyze these
equations using the phase diagram and local approximation techniques intro-
duced in the previous section. We discuss the example of a stock pollution
problem.

7.1 Intertemporal Optimization: Motivation

Many problems in the field of environmental and resource economics as well
as macroeconomics are of the form

max

∫ T

0

U(xt, yt, t) dt (7.1)

s.t. i) ẋt = f(xt, yt, t) (equation of motion)

ii) x0 given (initial condition)

iii) xT = x̄ (terminal condition)

iii′) xT free (alternative terminal condition) .

Here, x is the state variable and y is the control. Frequently, the utility
function will be of the form

U(xt, yt, t) = u(xt, yt) exp(−ρt)

indicating discounting with the constant rate of pure time preference ρ. Al-
ternatively, we can take u(xt, yt) to be a monetary payoff and ρ (or then
rather writing it r) as the market interest rate. In the example of a green-
house gas stock pollution problem we can think of the state variable xt as
representing the stock of CO2 in the atmosphere and the control yt as rep-
resenting emissions. The stock would cause disutility, while the emissions
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would be tied to welfare increasing consumption processes. In this example
a reasonable first approximation34 to the equation of motion is

ẋt = f(xt, yt, t) = yt − δxt . (7.2)

Given that by now we should be very familiar with the discrete time equation
of motion for the stock pollution problem, we want to derive equation (7.2)
from its discrete time analog. Hereto we replace the unit time step by a time
step ∆t in the discrete equation of motion:35

xt+∆t = yt ∆t+ (1− δ ∆t) xt (7.3)

⇒ xt+∆t − xt = yt ∆t− δ ∆t xt

⇒ xt+∆t − xt
∆t

= yt − δ xt

⇒ ẋt = yt − δ xt .

In these intertemporal optimization problems we also have to specify a ter-
minal condition. Example iii) above fixes the terminal stock to some given
quantity x̄, which in our example could correspond to a desired long-run CO2

concentration target. Alternatively, example iii′) states that at time T the
stock is free and, thus, the terminal state becomes part of the optimization
problem. We will encounter more terminal conditions further below. While
for the moment you might want to think of x and y as simple numbers, the
following reasoning permits these variables to be vectors of real numbers.

Recall how you would solve a static constraint optimization problem using
the Lagrange function (or method of Lagrange multipliers). For example, for
the problem

maxu(x, y) s.t. g(x, y) = 0

you would maximize the Lagrange function

maxL(x, y, λ) = u(x, y) + λg(x, y) .

34Atmospheric carbon does not actually decay but gets absorbed over time in different
sinks. The time scale of the decay depends on the various sinks and is non-exponential.

35In this step you actually have to think carefully about where a “1” turns into a ∆t.
You cannot simply read that off from the equation of motion, but you have to think about
the underlying dynamics.
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You could also use the Lagrangian to solve the discrete time version of our
stock pollution problem

T∑
t=0

U(xτ , yτ , τ) s.t. x1 = y0 + (1− δ)x0

x1 = y1 + (1− δ)x1

...

xt+1 = yt + (1− δ)xt

for all t ∈ {0, ..., T − 1} and xT = x̄t, x0 given. You would have to maximize
the Lagrangian36

maxL(x1, y1, λ1, ..., xT , yT , λT ) =
T∑
t=0

U(xt, yt, t) (7.4)

+
T∑
t=1

λt[xt − (yt−1 + (1− δ)xt−1)].

The Lagrange multipliers are the shadow values of the pollution stock. The
value of λt tells you how much (present value) welfare you would gain if you
had an exogenous increase of the pollution stock xt by 1 unit in period t. It
should obviously be negative for pollution.

We discuss the discrete time case for two reasons. First, it gives an intuition
why the derivation of the maximum principle in continuous time starts out
with a somewhat surprising but clever idea. Second, simply taking the con-
tinuous time limit of the Lagrangian in equation (7.4) above and employing
some dirty (not quite correct) math, will yield a good heuristics for arriving
at the necessary conditions for the intertemporal optimization problem laid
out in the maximum principle. We have already derived the continuous time
limit of the constraints (equation 7.3). At the same time the sums in equa-
tion (7.4) turn into integrals, leaving us with the continuous time limit of the

36Note that under the terminal condition xT = x̄ we cannot optimize the Lagrangian
over xT , but have instead the equation xT = x̄. However, if xT is free we can optimize of
xT . In particular, if the utility would be independent of the stock, it would give us the
condition λT = 0.
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Lagrange function

maxL
(
(xt)t∈[0,T ], (yt)t∈[0,T ], (λt)t∈[0,T ]

)
(7.5)

=

∫ T

0

U(xt, yt, t) + λt[ẋt − (yt − δ xt)] dt .

This equation will be central to deriving the maximum principle in the next
section.

7.2 The Maximum Principle: Derivation

We want to maximize the objective function

max

∫ T

0

U(xt, yt, t) dt s.t. ẋt = f(xt, yt, t)

given initial and terminal state. We assume that U and f are continuously
differentiable. As long as we make sure that the constraint

ẋt = f(xt, yt, t) ⇔ f(xt, yt, t)− ẋt = 0

is satisfied we can just as well maximize the objective function∫ T

0

U(xt, yt, t) + λt[f(xt, yt, t)− ẋt] dt , (7.6)

for an arbitrary function λt. Given we intuitively derived this expression
from the discrete time Lagrange function the reformulation hopefully does
not strike you as odd anymore. Think of the second term in the integral as
a zero in evening gown. While in the moment λt is an arbitrary function, we
later choose it in a convenient way that will also restore its interpretation as
the shadow value of capital. For the moment, we only require the function
λ to be (piecewise) differentiable, so that we can use integration by parts37

37Integration by parts is the analog to the product rule of differentiation:

d
dtuv = u̇v + v̇u ⇒

∫ b

a
d
dtuvdt =

∫ b

a
u̇vdt+

∫ b

a
v̇udt ⇒ uv|ba −

∫ b

a
u̇vdt =

∫ b

a
v̇udt .
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to transform equation (7.6) into∫ T

0

U(xt, yt, t) + λtf(xt, yt, t) + λ̇txt dt − λtxt|T0 .

We define the first two terms of the integrand as the so called Hamiltonian

H(xt, yt, λt, t) = U(xt, yt, t) + λtf(xt, yt, t) ,

delivering the objective function∫ T

0

H(xt, yt, λt, t) + λ̇txt dt− λTxT + λ0x0 . (7.7)

Remark: Here is an intuitive preview of what we do more rigorously below.
A mathematician would bite your head off if you do this, but it might be
useful to see what we are getting at if you have never seen the calculus of
variation before. Let us maximize the objective function L ≡ (7.7) with
respect to the same arguments that you would maximize a Lagrange
function in equation (7.4) or (7.5). Starting with the controls yt at
every point in time we obtain

∂L

∂yt
= 0 ⇒ ∂H

∂yt
= 0 .

Optimizing with respect to the state variables xt yields

∂L

∂xt
= 0 ⇒ ∂H

∂xt
+ λ̇t = 0 ⇒ ∂H

∂xt
= −λ̇t . (7.8)

The derived equation turn out to be the correct necessary conditions
for a maximum of equation (7.7). However, why would a mathemati-
cian bite your (or our) head off? First, the Hamiltonian is a density
in equation (7.7) and, as such, the Hamiltonian at a given point in
time has a Lebesgue measure of zero. Thus, we have to invoke some
sort of continuity argument, which we do by employing the calculus
of variation. Second, we cannot vary the states independently of the
controls at every point in time, so it is not obvious that we really have
the freedom to arrive at equation (7.8).
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Let y∗ : [0, T ] → IR be the optimal control. We assume that y∗ is (piecewise)
continuous. A change of the optimal control path cannot increase the value
of the integral in equation (7.7). In order to employ this simple insight for
our calculus we define a set of possible deviations from the optimal control
by the set of continuous functions H = {h ∈ C0[0, T ]}.38 Then

y = y∗ + ah

for h ∈ H and a ∈ [−1, 1] defines an alternative control path.39 Let x̃(a, h)
be the solution to the equation of motion ẋt = f(xt, yt, t) for the given initial
condition x0 under the control y = y∗ + ah. Given our assumption that
control is piecewise continuous and the function f(xt, yt, t) is continuously
differentiable, the solution x̃(a, h) is (piecewise) continuously differentiable
in a at every point in time. In the case that we require a fixed terminal
state xT = x̄ we have to restrict the set of feasible deviations to the subset
Hfts = {h ∈ H : x̃T (a, h) = x̄ ∀ a}, that is we can only permit deviations
that yield the required terminal state.40 For any feasible deviation path h
we define

Jh(a) =

∫ T

0

H
(
x̃t(a, h), y

∗
t + aht, λt, t

)
+ λ̇tx̃t(a, h) dt

+λT x̃T (a, h) + λ0x0 .

Now we are in a position to analyze small deviations from the optimal control
path without worrying about a Lebesgue zero measure or the dependence
between the stock and the control. All is taken care of if we take the derivative
of Jh(a) with respect to a for a feasible h. To grasp the meaning of the
optimality condition J ′

h(a) = 0 it might be helpful to expand Jh(a) around
a = 0. Abbreviating terms of higher order in a by the Landau symbol o(a)

38In case we allow for (only) piecewise continuous controls we take piecewise continuous
deviation paths here.

39You might realize that the parameter a does not extend the class of deviations that
we take into consideration. However, the parameter a will be used to making the welfare
changes caused by these deviations better tractable.

40By requiring that the terminal condition is met for all a our requirement is slightly
stronger, but the deviations are still sufficiently general to yield the sought for necessary
conditions.
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we find

Jh(a) = Jh(0) + J ′
h(0) a+ o(a)

=

∫ T

0

H
(
x̃t(0, h), y

∗
t , λt, t

)
+ λ̇tx̃t(0, h) dt + λT x̃T (0, h) + λ0x0

+

∫ T

0

∂H
(
x̃t(0, h), y

∗
t , λt, t

)
∂xt

∂x̃t(a, h)

∂a

∣∣∣∣
a=0

a

+
∂H
(
x̃t(0, h), y

∗
t , λt, t

)
∂yt

ht a+ λ̇t
∂x̃t(a, h)

∂a

∣∣∣∣
a=0

a dt

+λT
∂x̃T (a, h)

∂a

∣∣∣∣
a=0

a

+ o(a) ,

By assumption, a = 0 maximizes Jh(·). This Jh(0) term corresponds to the
second line in the above equations. The third to fifth line therefore have to be
zero for all ht. Otherwise, a small plus or minus a deviation would increase
Jh(·). Now comes a neat trick. Up to the current step λt was an arbitrary
function. Now we choose λt so that it satisfies the differential equation41

∂H
(
x∗t , y

∗
t , λt, t

)
∂xt

= −λ̇t , (7.9)

where x∗t = x̃t(0, h) is the optimal level of the stock in t. For such a choice of
λ the two terms under the integral (in line three and four) that depend on
the deviation of the stock cancel each other for all deviation paths h (and for
all a). Having chosen λ in this way the necessary condition for an optimum
requires that∫ T

0

∂H
(
x∗t , y

∗
t , λt, t

)
∂yt

ht dt+ λT
∂x̃T (a, h)

∂a

∣∣∣∣
a=0

= 0 .

41Note that it is sufficient to make the integrand zero at all but a finite number of points.
Thus, in case we permit for only piecewise continuous controls and the derivative of the
Hamiltonian can jump, we are still good in terms of satisfying the requirement that the
integral vanishes, even if the equation below in not satisfied at the times where the control
jumps.
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The equality has to hold for all deviations h ∈ H. By assumption
∂H
(
x∗
t ,y

∗
t ,λt,t

)
∂yt

is continuous and ht an arbitrary continuous function, then

∂H
(
x∗t , y

∗
t , λt, t

)
∂yt

= 0 (7.10)

has to hold for all t ∈ [0, T ].42 Moreover, in the case that our terminal state is

fixed we know that x̃T (a, h) = x̄ cannot vary and ∂x̃T (a,h)
∂a

∣∣
a=0

= 0. Therefore,
the second term in equation (7.10) is zero independently of λT . However, if
the terminal state is free, then also there will exist some deviation h such
that ∂x̃T (a,h)

∂a
̸= 0, and we obtain another necessary condition stating that

λT = 0 .

The intuition for this finding is straight forward. If the stock still had a
positive shadow value, we should have depleted it even more. If the stock
has a negative value (e.g. in the case of emissions), we should have emitted
even more (because we would not care about the future beyond T ). Collecting
conditions we found that together equations (7.1 i), (7.9), and (7.10) form a
set of necessary conditions for a maximum of the optimization problem (7.1).
Note that also the equation of motion (7.1 i) can be written as a condition
on the Hamiltonian by requiring

∂H
(
x∗t , y

∗
t , λt, t

)
∂λt

= ẋt .

In addition, we have either the boundary condition xT = x̄ or the transver-
sality condition λT = 0 if xT is free. The subsequent section summarizes
the results including a broader spectrum of terminal conditions than in our
derivation.

7.3 The Maximum Principle: Formal statement

We formulate the maximum principle for general dynamic optimization prob-
lem of the form

42A simple way to see this fact in the case of the free terminal state is by choosing

ht =
∂H
(
x∗,y∗

t ,λt,t
)

∂yt
so that the integrand is everywhere (weakly) positive. For a fixed

terminal state our deviation path has to satisfy the boundary conditions, so that the
derivation of the statement is slightly more intricate.
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Problem (DMP):

max

∫ T

0

U(xt, yt, t)

s.t. i) ẋt = f(xt, yt, t) (equation of motion)

ii) x0 given (initial condition)

iii.a) xT = x̄ or

iii.b) xT ≥ 0 or

iii.c) xT free

iv.a) T fix or

iv.b) T free


(terminal conditions)

Case iii) describes whether there are restrictions with respect to the terminal
state of the system. Case iv) describes whether the terminal time is fixed or
free (in iv.b the planning horizon T has to be chosen optimally).

Assumption 1: The functions U and f are continuously differentiable.

Definition (Hamiltonian): LetH(xt, yt, λt, t) = U(xt, yt, t)+λtf(xt, yt, t)

Proposition 2: Let (x∗t , y
∗
t )t∈[0,T ] solve problem (DMP) with (y∗t )t∈[0,T ] piece-

wise continuous. Then there exists a continuous function (λt)t∈[0,T ] such
that for all t ∈ [0, T ]:

• y∗t maximizes H(x∗t , y
∗
t , λt, t) for y ∈ Y ⊂ IR .

• Except at points of discontinuity of y∗t :
∂H(x∗

t ,y
∗
t ,λt,t)

∂xt
= −λ̇t .

• The following transversality conditions are satisfied:

case iii.a) no condition or

case iii.b) λT ≥ 0 and λTxT = 0 or

case iii.c) λT = 0 and

case iv.a) no condition or

case iv.b) H(x∗T , y
∗
T , λT , T ) = 0 .
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λt is called the costate variable or shadow value.

Intuitive Formulation: Assume H is strictly concave43 and differentiable
in yt. The necessary conditions for an optimal solution of problem
(DMP) are:

∂H(x∗t , y
∗
t , λt, t)

∂yt
= 0 ,

∂H(x∗t , y
∗
t , λt, t)

∂xt
= −λ̇t ,

∂H(x∗t , y
∗
t , λt, t)

∂λt
= ẋt

plus transversality condition(s).

Remark: xt and yt can be vectors. The formulation of problem (DMP) and
proposition 2 stays unaltered except for

• yt ∈ Y ⊂ IR becomes yt ∈ Y ⊂ IRn and

• ∂H(x∗
t ,y

∗
t ,λt,t)

∂xt
= −λ̇t becomes

∂H(x∗
t ,y

∗
t ,λt,t)

∂xit
= −λ̇it for all i ∈ {1, ..., n}.

The maximum principle gives us a set of necessary conditions for an optimal
solution to our intertemporal optimization problem. In the following we state
two sufficient conditions ensuring that the candidate solution is indeed the
optimum. We assume that the time horizon is fixed. Mangasarian sufficiency
condition (fixed terminal time):

Proposition 3: Given a fixed terminal time (case iv.a), the necessary con-
ditions in proposition 2 are sufficient for an optimal solution to problem
(DMP) if H(x, y, λt, t) is concave in (x, y) for all t ∈ [0, T ], the set of
feasible controls is convex, and

∂H(x∗t , y
∗
t , λt, t)

∂yt
(y∗t − ỹt) ≥ 0

43If H is linear maximization is not characterized by the differential condition.
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for all feasible control paths ỹ.
If H(x, y, λt, t) is strictly concave in (x, y) for all t ∈ [0, T ], then
(x∗t , y

∗
t )t∈[0,T ] is the unique solution to problem (DMP).

A less demanding sufficiency condition only evaluates concavity along the
optimized path. Arrow sufficiency condition (fixed terminal time):

Proposition 4: Given a fixed terminal time (case iv.a), the necessary con-
ditions in proposition 2 are sufficient for an optimal solution to problem
(DMP) if

Ĥ(xt, λt, t) = max
y
H(x, y, λt, t)

exists and is concave in xt for all t (evaluated for the optimal shadow
value path).
If H(x, y, λt, t) is strictly concave for all xt and t ∈ [0, T ], then xt is the
unique solution to problem (DMP), but the control does not have to
be unique.

7.4 Economic Interpretation

Interpretation of λ,H and the necessary conditions:

λ : Shadow value of the stock.

H: A period’s contributions to the overall value/welfare. It is a combina-
tion of the current utility (or profit) and the current change in stock
value.

H(xt, yt, λt, t) = U(xt, yt, t)︸ ︷︷ ︸
current utility

+ λtf(xt, yt, t)︸ ︷︷ ︸
change in stock value

The change in stock value λtf(xt, yt, t) captures the shadow price valued
change in stock (λtẋt) caused by the growth (or production) function
f(xt, yt, t).
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∂H
∂yt

= 0: Cannot increase the current contribution to overall value by increasing
or decreasing the control. Or breaking it up:

⇔ ∂U

∂yt
= −λt

∂f

∂yt

The optimal control yt has to balance an increase in current welfare
(profits) implied by a change in yt with the resulting decrease in stock
value.

∂H
∂xt

= −λ̇t: The standard interpretation of equation (7.11) is that the shadow price
of capital has to depreciate at the rate at which capital contributes to
the change in overall value (represented by the Hamiltonian). Recall
that the equation is an equilibrium condition. If capital value would
decay at a faster rate than its contribution to overall welfare, then you
are likely to have over-accumulated capital.

This is probably the hardest first order condition to interpret, so we
will try some alternative ways to get at the intuition. If you are happy
with the statement above, move on to the next condition. Note that
can rewrite the condition as

⇒ −λ̇t =
∂H

∂xt
=
∂U

∂xt
+ λt

∂f

∂xt
(7.11)

⇒ ∂U

∂xt
+ λt

∂f

∂xt
+ λ̇t = 0 (7.12)

The shadow value for capital is caused by future capital being valuable
either to derive utility or to maintain a certain stock level. Thus,
the value of an additional unit of capital has to be higher at t0 than
at a later point of time t1 if the unit is productive in the meanwhile
( ∂H
∂xt

> 0 ∀ t ∈ [t0, t1]) either by contributing to utility, or by further
increasing capital through stock production. But then, as the shadow
value is higher at t0 than at t1 it obviously had to fall.

Another way to think about the condition is as follows. The Hamilto-
nian expression gives the implied value change caused by a change in
the quantity of capital. However, if we think about optimally managing
the stock level, we have to take into account that a stock has a value
of its own. If the value of capital is decreasing over time, then, along
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an optimal path the additional unit of capital must yield a higher im-
mediate return. On the other hand, if capital gains value over time it
compensates for a lower return to an additional unit of capital via the
Hamiltonian. The following split of the effects might help this intuition:

– First, assume that λ̇t = 0. Then, the stock level is optimal if a
decrease in stock growth from an additional unit of xt (weighted
by its value) is offset by an increase in current utility.

– Second, assume that U is independent of xt and that an additional
unit of xt increases stock growth ( ∂f

∂xt
> 0) and, thus, future stock

value. Then, we would generally like to further increase the stock,
unless the value of the stock actually declines over time (e.g. be-
cause we approach the end of a finite planning horizon where the
stock becomes useless).

– Third, putting all effects together, equation (7.12) spells out that
we have to balance the three different reasons why we would like to
raise (or lower) the stock. First, there is immediate utility payoff.
Second, it causes an increase in the production of new stock (which
is valuable). Third, the value of a unit of capital increases. In
an optimum, whatever positive contribution there is has to be
balanced by negative contributions of the same magnitude.

λT = 0: With a free terminal state, whatever stock remains should be of no
value.

HT = 0: If T is optimal, the contribution at T to overall value must be zero (i.e.
the sum of current and future profits realized in T must be zero). If it
would be positive, we should keep going at least for a little bit, if it is
negative we should have stopped earlier.

7.5 Current Value Hamiltonian

Most problems including the stock pollutant example exhibit utility of the
form

U(xt, yt, t) = u(xt, yt) exp[−δt] .
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The same form is achieved if u(xt, yt) denotes monetary benefits that are
discounted at a constant interest rate δ. In these cases we can simplify the
analysis by defining the current value Hamiltonian

Hc(xt, yt, µt, t) = u(xt, yt) + µtf(xt, yt, t)

= exp[δt]H(xt, yt, λt, t)

where µt = λt exp[δt] .

Then the necessary conditions for an optimum become

∂H(x∗t , y
∗
t , λt, t)

∂yt
= 0 ⇒ ∂Hc(x∗t , y

∗
t , µt, t)

∂yt
= 0

∂H(x∗t , y
∗
t , λt, t)

∂λt
= ẋt ⇒ ∂Hc(x∗t , y

∗
t , µt, t)

∂λt
= ẋt

∂H(x∗t , y
∗
t , λt, t)

∂xt
= −λ̇t = −

[
µ̇t exp(−δt)− δµt exp(−δt)

]
⇒ ∂Hc(x∗t , y

∗
t , µt, t) exp[−δt]
∂xt

= (δµt − µ̇t) exp[−δt]

⇒ ∂Hc(x∗t , y
∗
t , λt, t)

∂xt
= δµt − µ̇t

For a finite time horizon, the transversality conditions stay the same.

7.6 Infinite Time Horizon

For many problems it is not obvious when to crop the planning horizon.
Then, we generally assume an infinite time horizon and discount future wel-
fare. Replacing T by ∞ in the maximization problem we have to be aware
of some subtleties.

• The objective function can potentially become infinite. Then our prob-
lem formulation no longer yields a complete order of the feasible paths.
In order to employ the tools presented here, we have to assume (and
check) that the maximum (or supremum) in problem (DMP) exists and
is finite.
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• The transversality condition limt→∞ λt = 0 is not necessary in the case
of a free terminal state.

• Under rather moderate assumptions the transversality condition44

lim
t→∞

H(x∗t , y
∗
t , λt, t) = 0 .

is necessary in the infinite horizon setting. Here H is the present value
Hamiltonian. The intuition for this transversality condition is that with
an infinite time horizon, there is no fixed terminal time.

For stating a sufficiency condition, let us assume a strictly positive discount
rate and the following terminal condition

lim
t→∞

btxt ≥ 0 for some b : IR+ → IR+ with existing lim
t→∞

bt <∞ .

For b = 1 the terminal condition simply states that there is a minimal stock
level. We use the current value formulation. Then, the following proposition
holds.

Proposition 5: The necessary conditions in proposition 2 [not including
the transversality conditions] are sufficient for an optimal solution to
problem (DMP) if

Ĥ(xt, λt, t) = max
yt

H(xt, yt, λt, t)

is concave in xt for all t (evaluated for the optimal shadow value path)
and

lim
t→∞

exp(−ρt)H(x∗t , y
∗
t , µt, t) = 0 and

lim
t→∞

exp(−ρt)µtxt ≥ 0

are satisfied for all feasible paths (yt, xt).
If, moreover, H(x, y, λt, t) is strictly concave for all xt then xt is the
unique solution to problem (DMP).

44These conditions use the value function which we introduce in the next section. They
basically state that the long-run (current value) value function is differentiable and does
not explicitly depend on time. See e.g. Acemoglu theorem 7.12, page 251.
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Quite frequently it is simply assumed that we can replace the transversality
condition by the assumption that we converge to the steady sate, i.e. that
things “settle down in the long run”.

7.7 Stock Pollutants: The Euler Equation

Recall the stock pollution problem where we wanted to maximize

max

∫ ∞

0

U(Et, St) exp(−δt)dt

subject to the constraint

Ṡt = Et − βSt ,

and given an initial stock S0. Note that we switched over to an infinite time
horizon. We assume that St ≥ 0 and, thus, that limt→∞ St ≥ 0. We maximize
over the path (Et)t∈(0,∞) and assume UE > 0, US < 0, UEE < 0 (decreasing
marginal utility from consumption that produces emissions), and USS < 0
(implying convex damages −USS > 0). In order to make use of the maximum
principle we define the (current value) Hamiltonian

Hc(Et, St, µt) = U(Et, St) + µt(Et − βSt)

and find the following necessary conditions:

∂Hc

∂Et

= UE + µt
!
= 0

⇒ µt = −UE (7.13)

⇒ µ̇t = −UEEĖt − UESṠt , (7.14)

∂Hc

∂St

= US − µtβ
!
= µtδ − µ̇t

⇒ µ̇t = µt(δ + β)− US . (7.15)

Plugging equation (7.13) and (7.14) into equation (7.15) yields

−UEEĖt − UESṠt = −UE(δ + β)− US . (7.16)
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This equation is known as the Euler equation45 for our problem. You can
always obtain the Euler equation (i.e. also for other optimal control problems)
by the method used above:

1. Obtain an equation for the shadow value λt (or µt) from the optimiza-
tion with respect to the control.

2. Take the time derivative of this equation to also obtain an equation for
the time change of the shadow value λ̇t (or µ̇t).

3. Plug these equations for λt and λ̇t (or µt and µ̇t) into the condition
on the derivative of the Hamiltonian with respect to the stock (which
differs depending on whether you deal with the present or the current
value Hamiltonian).

Recall that in addition to the equations above, we have two more necessary
conditions for an optimum. First, the equation of motion, which can also be
obtained from requiring

∂Hc

∂µt

= Et − βSt
!
= Ṡt . (7.17)

Second, a transversality condition has to hold. However, for the moment we
will replace it by the assumption that we converge into a steady state in the
long run.

In the steady state our state and control variables are constant (by definition)
implying Ė = Ṡ = 0. Then the Euler equation simplifies to the form

UE =
−US

δ + β
. (7.18)

This equation looks quite similar to a condition we would expect in a static
model: The marginal benefits from emission UE should be equal to the

45While to economists it is mostly known as the Euler equation, in science it is more
frequently referred to as the Euler-Lagrange or simply Lagrange equation. The two math-
ematicians derived it already in the 1750s. More precisely, the Euler equation is a general
first order condition for a dynamic optimization problem (written in a slightly different
form but similar to problem DMP). This general condition leads to equation (7.16) when
using the particular structure of the objective function and the equation of motion of our
stock pollution problem.
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marginal damages from emission −US. However, in equation (7.18) marginal
benefits from current emission should rather be equal to −US

δ+β
. The denom-

inator comes in because emission benefits are instantaneous while damages
are cumulative in time as we are dealing with a stock pollutant. Assume
that we (exogenously46) add one unit of emissions to the stock at time t = 0,
which creates a damage D in that (instantaneous) period. Some part of that
emission unit will decay until the next period. The rest will still cause dam-
age in later periods. The fraction of the additional unit remaining in the
atmosphere is exp[−βt] because our equation of motion assumes exponential
decay47. However, as we discount the future we don’t care quite as much
for the damage caused in the future so that the damage of the remaining
fraction of the emission unit at time t only yields the present value dam-
age D exp[−βt] exp[−δt]. Integrating the damage caused by that additional
emission unit at time t = 0 over an infinite time horizon yields∫ ∞

0

D exp[−(β + δ)t]dt =
1

−(β + δ)
D exp[−(β + δ)t]

∣∣∣∞
0

=
D

β + δ
,

explaining the steady state form of the Euler equation (7.18).

In general, the Euler equation yield the following condition on the marginal
value of an emission unit

UE =
−US + UEEĖt + UESṠt

δ + β
. (7.19)

In addition to the damage −US

β+δ
there are two more values that our current

benefit from emitting another unit must make up for in order for it to be
optimal. First, there is the term UEEĖt. We assumed UEE < 0 implying
decreasing marginal benefits from emitting (and using the emission flow for
consumption purposes). Assume that emissions are increasing over time
(Ėt > 0). Then, the decreasing marginal benefits from emissions imply that
a unit emission tomorrow is less valuable than today. Hence, as opposed
to the steady state, we rather emit a little more today, or, in value terms:

46We undertake the thought-experiment of adding one marginal unit to the steady state
stock. In this thought-experiment we neglect that it is infeasible in our model to add any
finite amount instantaneously to the stock, or that changing the stock while at the steady
state level would actually throw us out of the steady sate.

47In the steady state we have 0 = Ṡt = −βSt+Et ⇒ Ṡt+∆Ṡt = −β[St+∆Ṡt]+Et ⇒
∆Ṡt = −β∆St ⇒ ∆St = exp[−βt].
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The marginal value we derive from another emitted unit today does not have
to be as high as in a steady state (UEEĖt is negative). Second, there is
the term UESṠt. An assumption on this mixed derivative is not as straight
forward as it was for UEE. Let us assume UES > 0. The interpretation of
this assumption is that at a high emission stock, our welfare is even more
sensitive to creating emissions for consumption purposes. A story could be
that because it is so hot we appreciate AC even more. Assume that also the
emission stock is increasing over time (Ṡt > 0). Then the value of a marginal
unit of emissions increases in the future. In consequence, as compared to the
steady sate, the value of current emissions has to be higher in order to make
it optimal to emit the unit already today as opposed to the future.48

7.8 Stock Pollutants: Phase Space Analysis

Now we would like to analyze the optimal dynamics for our model of stock
pollution. In general, a full analytic solution cannot be achieved. Therefore,
we introduce a graphical analysis frequently applied in economic models of
optimal control. Aiming at a helpful diagram in the St − Et plain, we first
search for those curves where either the stock, or the optimal emissions do
not change over time. To simplify our analysis we assume in the following
that USE = 0. Observe that this assumption yields ‘another’ helpful sim-
plification. The condition also implies that the first derivatives only depend
on one of the two variables and we can write them as UE = UE(Et) and
US = US(St).

49 Moreover, we continue assuming UE > 0, US < 0, UEE < 0
and USS < 0. The following is a useful step by step procedure to obtain
the desired diagram used for the so called phase space analysis. A phase
space is simply a space pinning down a set of variables that characterizes the
dynamics of the system.

1. Draw a coordinate system with St on the axis of abscissa (x-axis) and
Et on the ordinate (y-axis).

48Similarly, under the assumptions UES < 0 and Ṡt > 0 the value of future emissions
decreases and current emissions become efficient already at a lower value. A story under-
pinning UES < 0 would be that once the stock and the implied damages are high enough
we no longer can enjoy our former consumption habits (creating emissions) as much as we
used to.

49From USE = 0 we know that the derivative of UE with respect to S is zero, implying
that UE is independent of S. Similarly US has to be independent of E.
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2. Where is Ṡt = 0?
From the equation of motion (7.17) we have Ṡt = 0 ⇔ Et = βSt.
Draw this curve (here a straight line) into the diagram.

3. What happens to the right of the Ṡt = 0 line?
Again by equation (7.17) we have Ṡt = Et − βSt < 0
Indicate that St is falling in this region by means of corresponding
arrows.

Remark: A more formal and more mechanical way to obtain this re-
sult is a follows. Define L(Et, St) = Et − βSt so that by equation

(7.17) we have Ṡt = L(Et, St). Then take the derivative ∂L(Et,St)
∂St

and evaluate it on the Ṡt = 0-line:

∂L(Et, St)

∂St

= −β ⇒ ∂L(Et, St)

∂St

∣∣∣
Ṡt=0

= −β < 0

We know that as we move right Ṡ increases and becomes positive.

4. What happens to the left of the Ṡt = 0 line?
By equation (7.17) we have Ṡt = Et − βSt > 0.
Indicate that St is increasing in this region by corresponding arrows.

5. Where is Ėt = 0?
From the Euler equation (7.19) we have

UE(Et) =
−US(St) + 0 + 0

δ + β
. (7.20)
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Implicit differentiation50, taking Et as a function of St, yields

UEE(Et)
dEt

dSt

=
−USS(St)

δ + β

⇒ dEt

dSt

=
−USS

(δ + β)UEE

< 0 .

Draw a falling line representing this curve into the diagram.

6. What happens to the right of the Ėt = 0 line?
By the Euler equation in form (7.16) we have

Ėt =
UE(E)(δ + β) + US(S)

UEE(E)
> 0 ,

where we used that going right from the Ėt line the stock S increases
and therefore US decreases (USS < 0) while the other terms depending
only on E stay unaltered. As UEE < 0 the right hand side increases
and Ė becomes positive.
Indicate that Et is increasing in this region by corresponding arrows.

Remark: Here the more formal and mechanical way pays off higher
than in the above case where we confronted a linear equation.
Again, define G(Et, St) = UE(Et)(δ+β)+US(St)

UEE(Et)
so that by equation

(7.16) we have Ėt = G(Et, St). Then take the derivative ∂G(Et,St)
∂St

and evaluate it on the Ėt = 0-line:

∂G(Et, St)

∂St

=
USS(St)

UEE(Et)

⇒ ∂G(Et, St)

∂St

∣∣∣
Ėt=0

=
USS(St)

UEE(Et)

∣∣∣
Ėt=0

> 0 (7.21)

We know that as we move right Ė increases and becomes positive.

50There are several ways to do this. One way is to take a total derivative of both sides
of equation (7.20) and solve for dEt

dSt
. Another way is to define Et = g(St) and replace

Et by the function g(St) in equation (7.20). Then derive both sides of the equation by
St and solve for g′(St). Finally, you can arrange equation (7.20) to the form h(Et, St) ≡
(δ + β)UE(Et)− US(St) = 0 and imply the implicit function theorem to obtain the same
result (the non-degeneracy condition is simply UEE < 0).
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Figure 6 Phase diagram for the stock pollution problem

7. What happens to the left of the Ėt = 0 line?
By equation (7.16) we have

Ėt =
UE(E)(δ + β) + US(S)

UEE(E)
< 0

by an analogous reasoning as in the previous step.
Indicate that Et is falling in this region by corresponding arrows.

As you probably realized, the arrows flip whenever switching the side of
the corresponding curve. Now label the quadrants starting with the top
quadrant and proceeding clockwise by I, II, III, and IV . From your arrows
you observe the following dynamics

• Where the Ė = 0-line and the Ṡ = 0-line cross the system is in the
steady state.

• In quadrants I and III we are moving away from the steady state.
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• In quadrants II and IV there is a particular path leading into the
steady state. Each of these paths is called a separatrix and a stable
manifold.

• Given an initial stock S0 we can pick the control E0 in exactly one way
to get onto the stable manifold. The arrows indicate the movement
along which the equation of motion and the Euler equation are satisfied.
If we keep picking the control Et so that we stay on the separatrix
we move the system into the steady state. Moreover, we know that
along the separatrix the equation of motion and the Euler equation are
satisfied.51

As we converge to the steady state the current value quantities converge to
a constant. Thus, it is straight forward that also the necessary transver-
sality condition for the Hamiltonian is met. Moreover, also the condition
limt→∞ exp[−δt]Stµt would be met even though it is not alway necessary.

Let us have another look at the sufficiency condition for our trajectory be-
ing the optimum. The concavity of the Hamiltonian in control and state
boils down to concavity of the utility function because of the linearity of
the equation of motion. Using Sylvester’s criterion52 for the negative defi-
niteness of the corresponding Hessian leads to the conditions UEE < 0 and
UEEUSS − U2

ES = UEEUSS > 0. These conditions are satisfied. Thus we are
left to show that

lim
t→∞

exp(−ρt)µtSt = lim
t→∞

exp(−ρt)[−UE(Et)]St ≥ 0

⇔ lim
t→∞

exp(−ρt)UE(Et)St ≤ 0 (7.22)

holds for all feasible paths. For this purpose we need another assumption.
For example, we can assume that the control has an upper bound Ē and that
UE(0) is finite. Then the long-run limit of the pollution stock has the upper

51Of course, for our qualitative derivation of the curves and arrows, we only know that
somewhere in the according quadrant there must be such a separatrix on which the arrows
indicating the movement corresponding to the equation of motion and the Euler equation
indeed lead into the steady state.

52Negative definiteness means that both Eigenvalues are strictly negative. Sylvester’s
criterion verifies negative definiteness by checking that the first leading minor is negative
and subsequent leading minors alternate signs. The leading minors of a matrix are the
determinants of the upper left k × k submatrices for k = 1, 2, ....
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limit limt→∞ St ≤ S̄ = Ē
β
. Moreover, the function UE(Et) is bounded and

equation (7.22) holds with equality for all feasible paths.

7.9 Stock Pollutants: Local Dynamics in the Neigh-
borhood of the Steady State

We maintain the assumptions of the preceding section. Thus, the Euler
equation (7.16) and the equation of motion (7.17) are

−UEE(E)Ėt = −(δ + β)UE(E)− US(S)

⇒ Ėt =
(δ + β)UE(E) + US(S)

UEE(E)
(7.23)

and

Ṡt = Et − βSt . (7.24)

In the following we approximate these functions linearly in order to find the
approximate behavior of our system close to the steady state. The approxi-
mate system of equations will give us enough information to find out whether
the steady state is stable and some other qualitative features of the system.
We denote the steady state values of the stock and the control by S∗ and E∗.
In the steady state the above equations imply

(δ + β)UE(E
∗) = −US(S

∗) and E∗ = βS∗ . (7.25)

In order to approximate equations (7.23) and equation (7.24) we define

G(Et, S) =
(δ + β)UE(E) + US(S)

UEE(E)
and

L(Et, St) = Et − βSt .

The partial derivatives of these functions indicate how Ė and Ṡ change as
we move in the Et − St plane. We find

dG(E, S)

dE
=

(δ + β)UEE(E)UEE(E)− [(δ + β)UE(E) + US(S)]UEEE(E)

U2
EE(E)

.
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Evaluated at the steady state where equations (7.25) are satisfied the squared
bracket vanishes leaving us with

dG(E, S)

dE

∣∣∣
stead

= δ + β .

Similarly we obtain for the first order change in St as derived in the remark
of the previous section (equation 7.21)

∂G(E, S)

∂S

∣∣∣
stead

=
USS(S

∗)

UEE(E∗)

These two equations together give us our linear approximation of the Euler
equation (7.23). Denote deviations from the steady state by ∆Et = Et −E∗

and ∆St = St −S∗. Then the approximate Euler equation can be written as

∆Ėt = (δ + β)∆Et +
USS(S

∗)

UEE(E∗)
∆St , (7.26)

where ∆Ėt = Ėt − Ė∗ = Ėt.

Similarly we can approximate the equation of motion for the pollution stock
employing that

dL(Et, St)

dEt

= 1 and
dL(Et, St)

dSt

= −β ,

which holds everywhere in the Et − St−plane and, thus, in the steady state.
We therefore approximate the equation of motion (7.24) for the pollution
stock by

∆Ṡt = ∆Et − β∆St . (7.27)

Observe that, because the original equation of motion was linear, the linear
‘approximation’ is actually exact (and defining L and taking partial deriva-
tives was not necessary). Together equations (7.26) and (7.27) can be written
as the matrix equation(

∆Ėt

∆Ṡt

)
=

(
δ + β USS(S

∗)
UEE(E∗)

1 −β

)(
∆Et

∆St

)
. (7.28)
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Denoting the trace of a matrix

A =

(
a b
c d

)
by tr(A) = a+d, the determinant by det(A) = ad− bc, and the discriminant
by ∆(A) = tr(A)2−4 det(A) = (a+d)2−4(ad−bc), recall from linear algebra
that the Eigenvalues (or characteristic roots) of A are given by

ξ1,2 =
1

2

(
tr(A)±

√
∆(A)

)
=

1

2

(
a+ d±

√
(a+ d)2 − 4(ad− bc)

)
.

Note that the sign of the discriminant ∆(A) decides whether the Eigenvalues
are real or complex. For the matrix characterizing the dynamics of our system
of equations (7.28) these quantities translate into

tr(A) = δ + β − β = δ > 0

det(A) = −β(δ + β)− USS(S
∗)

UEE(E∗)
< 0 (7.29)

∆(A) = δ2 − 4 det(A) > δ2

= δ2 + 4

(
β(δ + β) +

USS(S
∗)

UEE(E∗)

)
ξ1 =

1

2

(
δ +

√
∆(A)

)
> 0

ξ2 =
1

2

(
δ −

√
∆(A)

)
< 0 . (7.30)

Our system of equations determining the dynamics around the steady state
has two real Eigenvalues, one positive and one negative. The next subsection
7.10 discusses in detail what these Eigenvalues tell us about the dynamics in
the neighborhood of the steady state and why. Here I summarize some of the
information most important to us. The fact that we have one positive and
one negative Eigenvalue tells us that there exist precisely two separatrices
(connecting in the steady state) that lead us into the steady state on a
trajectory that satisfies the necessary conditions. Off these separatrices we
would move away from the steady state if we were to satisfy the necessary



7.9 Stock Pollutants: Local Dynamics in the Neighborhood of the Steady State200

conditions for an optimum. For these reasons such a steady state is called
saddle point stable.

If both Eigenvalues would be real and negative, we would converge from the
neighborhood into the steady state from anywhere in the phase space while
satisfying the necessary conditions. The steady state would be stable. If both
Eigenvalues were real and positive, there would be no separatrix that would
carry us from the neighborhood into the steady state while satisfying the
equations of motions derived from the necessary conditions for an optimum.
The steady state would be unstable. If we had complex Eigenvalues we
would circle into or out of the steady state, rather then following a more
or less straight line. The real part of the complex Eigenvalue determines
whether we circle into the steady state (for a negative real part) or whether
we circle out (for a positive real part).

The solutions characterizing the approximate dynamics in the neighborhood
of the steady state are of the form

(
∆Et

∆St

)
= a1v⃗1 exp[

+︷︸︸︷
ξ1 t] + a2v⃗2 exp[

−︷︸︸︷
ξ2 t] (7.31)

with a1, a2 ∈ IR and v⃗1 being the Eigenvector corresponding to the Eigenvalue
ξ1 and v⃗2 being the Eigenvector corresponding to the Eigenvalue ξ2. From
equation (7.31) you can observe why there is precisely one path leading into
the steady state. Take the solution where a1 = 0, a2 > 0. Then the deviations
from the steady state ∆Et and ∆St decay to zero as time goes to infinity.
However, for all solutions where a2 > 0 we diverge away from the steady state
exponentially (with the local approximation quickly losing validity). Thus,
the direction of the separatrix that you explored in your phase diagram is, in
the neighborhood of the steady state, given by (plus-minus) the Eigenvector
v⃗2, which is the Eigenvector to the negative characteristic root that you can
calculate from equation (7.30). Denoting the matrix in equation (7.28) by A
we know that the Eigenvectors satisfy

Av⃗i = ξiv⃗i ⇒ (A− ξi1I)v⃗i = 0 ,

with 1I denoting the unit matrix. Moreover, by the definition of an Eigenvalue
we know that the rows of (A − ξi1I) are linearly dependent so that we can
use e.g. the lower row to calculate the elements of the Eigenvector which we
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denote by ∆Ei and ∆Si:

∆Ei − (β + ξi)∆S
i = 0 ⇒ ∆Ei = (β + ξi)∆S

i .

For the negative Eigenvalue ξ2 the latter equation gives us the slope of the
separatrix in the neighborhood of the steady state:

∆Ei=2

∆Si=2
= β +

1

2

(
δ −

√
δ2 + 4

(
β(δ + β) +

USS(S∗)

UEE(E∗)

) )

= β +
1

2

(
δ −

√
δ2 + 2(2β)δ + (2β)2 + 4

USS(S∗)

UEE(E∗)

) )

= β +
1

2

(
δ −

√
(δ + 2β)2 + 4

USS(S∗)

UEE(E∗)

) )
.

7.10 Dynamics in the Neighborhood of a Steady State:
General Remarks

If we like to learn about the local dynamics in the neighborhood of a steady
state we linearize our first order differential system. Locally, the generally
nonlinear system will behave approximately like the linearized one and a
system of linear differential equations is easy to solve. This step is also
a starting point for numerically calculating the optimal control path of a
general dynamic optimization problem. This section derives and generalizes
the results already stated in the preceding section and explains why the
Eigenvalues provide the information already mentioned.

In general our dynamic system will be of the form

ż1 = g1(z1, . . . , zn)

ż2 = g2(z1, . . . , zn)

... =
...

żn = gn(z1, . . . , zn)

We linearize the system around the steady state. Letting z∗1 denote steady
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state values and ζi = zi − z∗i (zeta) we obtain the form
ζ̇1
ζ̇2
...

ζ̇n

 =


∂g1(z∗1 ,...,z

∗
n)

∂z1

∂g1(z∗1 ,...,z
∗
n)

∂z2
. . .

∂g1(z∗1 ,...,z
∗
n)

∂zn
∂g2(z∗1 ,...,z

∗
n)

∂z1

∂g2(z∗1 ,...,z
∗
n)

∂z2
. . .

∂g2(z∗1 ,...,z
∗
n)

∂zn
...

...
...

∂gn(z∗1 ,...,z
∗
n)

∂z1

∂gn(z∗1 ,...,z
∗
n)

∂z2
. . .

∂gn(z∗1 ,...,z
∗
n)

∂zn



ζ1
ζ2
...
ζn

 (7.32)

We denoting the Jacobian, i.e. the ‘derivative matrix’, by A. Then, this
system of linear first order differential equation can be written as

ζ̇ = Aζ . (7.33)

The trial solution ζ = v exp(λt) with an arbitrary n-vector v implies

λ v exp(λt) = A v exp(λt) ,

⇔ λ v = A v ,

and, thus, that ζ = v expλt indeed solves the differential equation for pairs
of eigenvalues λ (characteristic roots) and eigenvectors v (characteristic vec-
tors).

Assumption 2: The matrix A is (complex) diagonalizable.

Then the n eigenvectors vi corresponding to the n eigenvalues λn are linearly
independent and the general solutions of the linearized differential system is
of the form

ζ(t) = α1 v1 exp(λ1t) + α2 v2 exp(λ2t) + ...+ αn vn exp(λnt) (7.34)

with α1, α2, ...αn ∈ IC.

Another way to reach equation (7.34) is longer but slightly more intuitive.
Observe that due to assumption 2 there exists an invertible matrix S such
that

SAS−1 = D
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where D is a diagonal matrix of the form

D =



λ1 0 . . . . . . . . . . . . . 0
0 λ2 0 . . . . . . . . . 0
0 0 λ3 0 . . . . 0
...

. . .
...

0 . . . . . . . . . . . λn−1 0
0 . . . . . . . . . . . 0 λn


The system

ξ̇ = Dξ (7.35)

has the obvious, linearly independent solutions

ei exp(λit) for i = 1, ..., n ,

where ei denotes the ith unit vector. But equation (7.35) is equivalent to

S−1ξ̇ = S−1DS S−1ξ

⇔ S−1ξ̇ = AS−1ξ

so that S−1ξ is a solution to system (7.33) iff ξ is a solution to system (7.35).
Moreover, recall from linear algebra that the column vectors of the matrix
S−1 are the eigenvectors of A. Thus, once more we have that the eigenvectors
vi exp(λit) = S−1ei exp(λit) for i = 1, ..., n span the solution space of system
(7.33). Again we obtain the general solution (7.34).

For real eigenvalues (and real coefficients) the interpretation of equation
(7.34) is straight forward. If we happen to move along an eigenvector vi
corresponding to a negative eigenvalue λi (i.e. all αj ̸=i = 0 in equation 7.34)
we converge into the steady state as exp(λit) falls to zero. If we happen
to move along an eigenvector vj corresponding to a positive eigenvalue λj
we diverge away from the steady state as exp(λit) grows exponentially (note
that the local approximation quickly loses its validity).

Complex eigenvalues (and eigenvectors) have no immediate economic inter-
pretation as economic variables are not moving in a complex plane. However,
complex roots of the characteristic polynomial have an immediate implica-
tion for the dynamics in the real space. They describe a spiral movement. If
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the real part of the eigenvalue is positive we spiral out of the steady state, and
if the real part of the eigenvalue is negative we spiral into the steady state.
The following reasoning explains this conjecture. First, it can be shown that
complex roots always come in conjugate pairs. Let λ = a+ ib be a complex
root of the characteristic polynomial, then so is λ = a − ib. Second, it can
be shown that if v is a (generally complex) eigenvector of A with eigenvalue
λ then its complex conjugate v is an eigenvector to the eigenvalue λ. Then,
in particular, the system (7.32) has solutions of the form

ζ(t) = α1 v exp(λt)︸ ︷︷ ︸
≡ν(t)

+α2 v exp(λt)︸ ︷︷ ︸
≡ν(t)

with arbitrary coefficients α1, α2 ∈ IC. In particular, we can choose α1 = α2 =
1
2

or also α1 = −α2 =
1
2i
. These give us the solutions

ζ∗(t) ≡ ν(t) + ν(t)

2
= Re (v exp(λt)) and

ζ†(t) ≡ ν(t)− ν(t)

2i
= Im (v exp(λt)) .

Both of these solutions are real. If we write the complex Eigenvalue λ as
λ = (a+ ib)t we can use Euler’s formula

exp(ix) = cos(x) + i sin(x)

to rewrite the solutions as

ζ∗(t) = Re
(
[Re(v) + iIm(v)] exp(at) exp(ibt)

)
= Re

(
[Re(v) + iIm(v)] exp(at) [cos(bt) + i sin(bt)]

)
= exp(at) Re

[
Re(v) cos(bt) + iRe(v) sin(bt) + iIm(v) cos(bt)

+i2Im(v) sin(bt)
]

= exp(at)
[
Re(v) cos(bt)− Im(v) sin(bt)

]
and similarly

ζ†(t) = exp(at)
[
Re(v) sin(bt)− Im(v) cos(bt)

]
.
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This form of writing the solution shows clearly that the real part of the Eigen-
value, a, informs us whether we converge to the steady state (a < 0 implies
that the deviation ζ(t) from the steady state decays to zero) or whether we
diverge (a > 0). At the same time we observe that imaginary part of the
complex Eigenvalue, b, characterizes the oscillation frequency.

7.11 Stock Pollutants: Comparative Statics and Dy-
namics

This subsection discusses how changes in the exogenous variables affect the
steady state and the optimal trajectories. The steady state is characterized
by equation (7.23) for Ėt = 0 and equation (7.24) for Ṡt = 0. We analyze the
effects of first order changes in the parameters by taking the total derivative
of this system of equations with respect to ρ, β, and the endogenous vari-
ables E and S, which are constants in the steady state. We have already
calculated the changes of the equations in E and S when we derived the local
approximation of our dynamic system around the steady state. The result is
summarized in equation (7.28), which gives us the left hand side of(

δ + β USS(S
∗)

UEE(E∗)

1 −β

)
︸ ︷︷ ︸

A

(
dE
dS

)
=

(
− UE(E∗)

UEE(E∗)

S∗

)
dβ +

(
− UE(E∗)

UEE(E∗)

0

)
dρ .

From equation (7.29) we know that detA is negative. Using Cramer’s rule
(or inverting the matrix) we find e.g.

dE

dβ
=

detA1,β

detA
> 0

where

detA1,β = det

(
− UE(E∗)

UEE(E∗)
USS(S

∗)
UEE(E∗)

S∗ −β

)
= β

UE(E
∗)

UEE(E∗)
− St

USS(S
∗)

UEE(E∗)
< 0
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is the determinant of the matrix obtained from replacing the first column in
A by the vector characterizing the changes in β. Similarly we find

dE

dρ
=

detA1,ρ

detA
> 0 and

dS

dρ
=

detA2,ρ

detA
> 0

where

detA1,ρ = det

(
− UE(E∗)

UEE(E∗)
USS(S

∗)
UEE(E∗)

0 −β

)
= β

UE(E
∗)

UEE(E∗)
< 0 and

detA2,ρ = det

(
δ + β − UE(E∗)

UEE(E∗)

1 0

)
=

UE(E
∗)

UEE(E∗)
< 0 .

Both, emission flow and emission stock fall unambiguously for a lower rate
of pure time preference. Moreover, we saw above that the emission flow
decreases whenever the pollution stock decays at a lower rate. In determining
the pollution stock’s reaction to a change in the decay rate the reduced
emission flow acts in the opposite directions of the lower decay rate. Indeed,
both, a net increase or a net decrease in the pollution stock under a decrease
in the decay rate are possible. This is observed from

dS

dβ
=

detA2,β

detA

where the sign of

detA1,β = det

(
δ + β − UE(E∗)

UEE(E∗)

1 S∗

)
= (δ + β)S∗ +

UE(E
∗)

UEE(E∗)

is undetermined at the current level of generality. We can transform the
determinant employing the steady state equation E∗ = βS∗ and denoting the
elasticity of marginal utility with respect to emissions (and thus consumption
producing the emissions) by ηU,E to the form

detA1,β =

(
1 +

δ

β

)
E∗ +

E∗

dUE(E∗)
dE

E∗

UE(E∗)

= E∗
(
1 +

δ

β
− 1

ηU,E

)
.
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We find that the pollution stock decreases with a lower decay rate whenever

detA1,β < 0 ⇔ 1 +
δ

β
<

1

ηU,E
⇔

(
1 +

δ

β

)
ηU,E < 1 .

Under the assumption that ηU,E is constant,53 we have the following inter-
pretation. A low rate of time preference makes it ‘more likely’ that the
pollution stock is reduced. So does a high responsiveness of marginal utility
to changes in emissions. A high decay rate also increases the ‘likelihood’ that
the pollution stock is reduced with a reduction of the decay rate.

So far we have only analyzed the effects of parameter changes on the steady
state. In the following we examine a change of the control along the optimal
trajectory under a change in the discount rate. We already know that the
steady state value of emissions E∗new and of the pollution stock S∗new are
higher under an increase in the discount rate to ρnew > ρ. We would like
to show that, for any given pollution stock S, the optimal control Enew(S)
is higher than the optimal control E(S) under the lower discount rate. The
argument runs by contradiction. We already know that in the steady state
E∗new > E∗ and S∗new > S∗. A look at Figure 6 should convince you
that the new steady state lies above the optimal trajectory under the old
parameterization. Assume there existed a pollution stock S◦ such that for
the optimal controls it would hold Enew(S◦) < E(S◦). Then the stable
manifolds of the old and the new scenario would have to intersect at some
point (S†, E†).

1. Assume we are on the left of the new steady state. At the intersection
point (S†, E†) the optimal trajectory under the old parameterization
would have to fall steeper than the optimal trajectory under the new
parameterization. Employing equations (7.23) and (7.24) we derive the
implication

dE

dS

∣∣∣∣
S†,E†,ρnew

=
Ėt

Ṡt

∣∣∣∣∣
S†,E†,ρnew

=
(δnew + β)UE(E

†) + US(S
†)

UEE(E†) (E† − βS†)

>
(δ + β)UE(E

†) + US(S
†)

UEE(E†) (E† − βS†)
=
Ėt

Ṡt

∣∣∣∣∣
S†,E†,ρ

=
dE

dS

∣∣∣∣
S†,E†,ρ

.

53Otherwise, ηU,E is itself a function of β and ρ spoiling the subsequent reasoning.
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Another look at Figure 6 should convince you that left of the steady
state Ṡt = E† − βS† is positive so that the above equation implies
ρnew < ρ, which delivers the contradiction.

2. Assume we are on the right of the new steady state. At the intersection
point (S†, E†) the optimal trajectory under the new parameterization
would have to fall steeper than the optimal trajectory under the old
parameterization. Employing equations (7.23) and (7.24) once more
we derive the implication

dE

dS

∣∣∣∣
S†,E†,ρnew

=
Ėt

Ṡt

∣∣∣∣∣
S†,E†,ρnew

=
(δnew + β)UE(E

†) + US(S
†)

UEE(E†) (E† − βS†)

<
(δ + β)UE(E

†) + US(S
†)

UEE(E†) (E† − βS†)
=
Ėt

Ṡt

∣∣∣∣∣
S†,E†,ρ

=
dE

dS

∣∣∣∣
S†,E†,ρ

.

Another look at Figure 6 should convince you that right of the steady
state Ṡt = E† − βS† is negative so that the above equation implies
ρnew < ρ, which delivers the contradiction.

Hence, an increase in the discount rate increases the optimal emission level
at all levels of the pollution stock.
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Nonrenewable resources

This chapter is an introduction to the economics of nonrenewable resource
extraction. We consider a resource nonrenewable if its renewal time can
be considered negligible compared to its typical consumption flow or within
human planning horizons. Common examples are geological resources such
as oil, coal, gas, and ores, but also old growth natural forests or top soil,
which need centuries to recover. The potential for irreversible loss also qual-
ifies biodiversity as a nonrenewable resource. Our analysis focuses on those
nonrenewables whose main benefit arises from their consumption. The first
chapter on nonrenewable resource use focuses on the optimal management
in a social planner setting, paying particular attention to the time path of
extraction, the time to full exploitation, and the trajectory of resource prices
(or shadow values). The second chapter analyzes extraction in a competitive
market and under a monopolistic ownership of the resource and it compares
the resulting extraction paths to those of the social optimum. This subse-
quent chapter also analyzes resource taxation and the impact of stock depen-
dent extraction costs and technological progress on the evolution of resource
prices.

8 Nonrenewable Resources: Socially Optimal

Extraction

We start by analyzing the optimal use of a nonrenewable resource in a general
setting. Because the stock of a nonrenewable resource can only decline, we
will eventually run out of the resources. A steady state might not exist.
As a result, the terminal conditions play a particularly important role when
analyzing the optimal extraction of nonrenewable resources.

8.1 Problem formulation

We let Rt denote the stock of the resource left for future use, and we let qt
denote the resource flow. In this nonrenewable resource context, qt is com-
monly referred to as the extraction rate, even if it is merely the resource flow
and not truly a rate in the sense of the rate of change of the stock (− Ṙ

R
). The
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present chapter focuses on some core insights governing optimal extraction
patterns. For this purpose, we abstract from an explicit production sector.
Instead, we assume the existence of a direct utility function U(qt) character-
izing society’s use value of the resource. This utility function captures the
stylized facts about how much our society depends on at least a minimal
availability of the resrouce, and how quickly our use value falls with an in-
crease of the resource flow. We note that this utility function represents the
net benefit of the resource flow. Possible extraction costs54 or flow-related
externalities are contained in U(qt). The social planner’s optimal control
problem is

max
qt

∫ T

0

U(qt)e
−ρt dt (8.1)

s.t. i) Ṙt = −qt
ii) RT ≥ 0 (terminal condition)

iii) R0 = given (initial resource stock)

iv) T free.

The equation of motion for nonrenewables is simple, Ṙt = −qt; what is
extracted reduces the stock of the resource left for tomorrow. We cannot go
negative on a natural resource. Thus, the stock Rt has to be nonnegative at
all times. In most cases, it suffices to impose the non-negativity constraint
on the last period, where it plays a crucial role for evaluating the terminal
condition. In the present section, we will skip over a potentially binding
nonnegativity constraint before the end of the time horizon; we address this
possibility later in Section 8.7. The complete problem statement furthermore
contains the initial stock of the resource R0 and the time horizon. Here,
we assume that the time horizon is endogenous (free). The choice of the
utility function will ultimately determine whether we want to fully exploit
the resource in finite time. Alternatively, we could stipulate a particular time
horizon after which the social planner has no more interest in consuming or
preserving the resource, which generally results in a different solution.

54The functional form can only capture constant and resource flow dependent extraction
costs. See Section (9.2) for an example where we explicitly split utility into costs and
benefits to compare it to a market setting. We will discuss stock dependent and time
dependent extraction costs (exogenous technological progress) later in Section 9.5.
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The current value Hamiltonian associated with the optimal control prob-
lem (8.1) is

HC(qt, µt) = U(qt) + µt(−qt).

Assuming an interior solution, the resulting necessary conditions for an op-
timal extraction program are

∂HC

∂qt
= U ′(qt)− µt

!
= 0 ⇒ U ′(qt) = µt (8.2)

∂HC

∂Rt

= 0
!
= ρµt − µ̇t ⇒ µt = µ0e

ρt (8.3)

∂HC

∂µt

= −qt
!
= Ṙt.

Equation (8.2) states that the marginal utility of extraction has to equal the
shadow value of the resource in the ground (measured in utils, the units of
the objective). Equation (8.3) states that the resource’s shadow value should
grow at the discount rate ρ.55 Alternatively, we find that the present value
shadow price λt = e−ρtµt = µ0 is constant. As usual, the third necessary
condition returns the equation of motion.

8.2 Euler equation

We obtain the Euler equation taking a total time differential of equation
(8.2), finding

d

dt
U ′(qt) = µ̇t ⇒ µ̇t = U ′′(qt)q̇t, (8.4)

and then plugging the result for µ̇t and equation (8.2) for µt into the differ-
ential version of equation (8.3) delivering the Euler equation

U ′′(qt)q̇t = ρU ′(qt) ⇔ q̇t = ρ
U ′(qt)

U ′′(qt)
. (8.5)

55We have formulated a social welfare objective for resource use, measuring the objective
in welfare units or ‘utils’. If the welfare is a representative agent’s utility, then ρ is the
agent’s pure rate of time preference. If we measure welfare in real or monetary units, the
discount rate would generally correspond to the consumption discount rate.
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We now rewrite this equation using the Arrow-Pratt measure of relative risk
aversion, RRA(q) = −U ′′(q)

U ′(q)
qt. In our context, it is a measure for the decision

maker’s desire to smooth consumption over time, and the inverse of the
elasticity of intertemporal substitution. Then the actual extraction

rate q̂t is

q̂t ≡
q̇t
qt

=
−ρ

−U ′′(qt)
U ′(qt)

qt
= − ρ

RRA(qt)
. (8.6)

This rate of change of extraction is negative, implying a declining resource use
over time. Optimal resource use declines more quickly for a more impatient
society ρ. It falls more slowly, if society has a greater desire to smooth
consumption over time (or generations). This Euler equation tells us that
high patience as well as a high sense of intergenerational justice both tend
to “stabilize” extraction.

The right side version of equation (8.3) suggests that deriving the (usual form
of the) Euler equation might not be necessary if our only interest was to solve
the problem. Neither the objective function nor the resource’s equation of
motion depend explicitly on the level of the current resource stock. As a
result, the second necessary condition turns into a particularly simple dif-
ferential equation that is easily integrated. Inserting equation (8.2) straight
into the right side version of equation (8.3) delivers

U ′(qt) = µ0 e
ρt ⇔ e−ρtU ′(qt) = µ0. (8.7)

We learn that, under optimal extraction, marginal utility increases inversely
to the discount factor, or, that the discounted marginal utility of a unit of the
resource is constant over time. Marginal utility is generally strictly falling in
consumption so that we can invert U ′(qt). Denoting the inverse by U ′−1(qt)
delivers

qt = U ′−1 (
µ0 e

ρt
)
. (8.8)

8.3 How to stop?

Neither the Euler equation (8.6) nor equation (8.8) in section 8.2 solve the
resource extraction problem by themselves. The Euler equation merely gives
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us the speed at which extraction should fall, but not the starting level. Simi-
larly, equation (8.8) still depends on the initial shadow value of the resource,
which remains unknown. Alternatively, we can replace the initial shadow
value with the intial extraction flow q0 = U ′−1(µ0), which is also yet to be
determined.

Our necessary conditions involve two ordinary first order differential equa-
tion. Their solution has two degrees of freedom. The initial resource stock
pins down one of these degrees of freedom. The second degree of freedom
manifests in the unkown initial level of the resource flow or, equivalently,
in the unknown initial shadow value of the resource. For further progress,
we have to make use of the terminal condition. The terminal condition
RT ≥ 0 corresponds to case iii.b) in our formulation of the Maximum Princi-
ple. Proposition 2 in Section 7.3 states that this terminal condition imposes
the transversality conditions

λT ≥ 0 and λTRT = 0

⇔ µT ≥ 0 and e−ρTµTRT = 0. (8.9)

Proposition 2 is formulated in present value and we transformed the present
value shadow prices λt = e−ρtµt into current value shadow prices µt. In-
tuitively, the right side condition states that in the final period, either the
resource has to be depleted or it must be of no value. If the resource stock
has been depleted, its value must be (weakly) positive.

By equation (8.3), we know that our optimal control problem has a constant
present value shadow price λt = e−ρtµt = µ0. Thus, the transversality con-
dition can only be met with RT = 0.56 This finding implies that an optimal
extraction program exploits all of the resource between the present and the
terminal period T . For a given T we obtain the condition∫ T

0

qtdt =

∫ T

0

U ′−1 (
µ0 e

ρt
)
dt

!
= R0, (8.10)

which will help us to find the initial extraction rate and the initial shadow
value (related by equation 8.2). We used equation (8.8) for the extraction
rate.

56In the infinite time horizon, the corresponding transversality condition limT→∞ RT =
0 is not generally a necessary condition for an optimum. Yet, the cases where it fails are
somewhat pathological considering economic application.
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For a fix time horizon, we would now have collected all the information re-
quired to solve the problem, assuming that the necessary conditions uniquely
identify the solution. However, our problem features a free (endogenous) fi-
nal period T and we have to identify this terminal time before we can apply
equation (8.10) to pin down the solution. Again, Proposition 2 comes to our
rescue. The free terminal time corresponds to case iv.b) and the proposition
requires the final period’s Hamiltontian to be zero

H(RT , qT , λT , T ) = 0 ⇔ e−ρTU(qT )− λT qT = 0

⇔ e−ρT
(
U(qT )− µT qT

)
= 0. (8.11)

We recall that the Hamiltonian characterizes period T ’s value gain along
our optimal extraction program, accounting for both use value and shadow
value of the remaining resource stock. If it is optimal to stop, then the value
gain from going on for another period has to be zero. The Hamiltonian in
Proposition 2 is in present value, and the round bracket’s in equation (8.11)
contain its present value version. As long as the extraction stops in finite
time, we can exchange the present value and the current value Hamiltonian
in the terminal condition. However, in case resource use stretches over an
infinite time horizon, only the present value Hamiltonian has to approach
zero (see Section 7.6). Then, we might not find that U(qT ) = µT qT ⇔
Hc(RT , qT , µT , T ) = 0 (in the limit), but condition (8.11) will be met because
limT→∞ e−ρT → 0 (and the term in backets not diverging faster).

Given our finding that the present shadow value λt = µ0 is constant in the
nonrenewable resource extraction problem, we can write equation (8.11) as57

qT =
e−ρTU(qT )

µ0

. (8.12)

In the case of an infinite extraction horizon, the equation requires (and is
satisfied if)

lim
T→∞

qT = 0. (8.13)

57In an economically interesting setting we have µ0 > 0. Otherwise, equation (8.2)
implies 0 = µ0 = U ′(0); already the first unit of extraction would not yield positive
marginal utility. As a result the shadow price is always zero and extraction would not
take place. The reasonable assumption that U ′(0) > 0 rules out such a degeneracy.
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assuming a well-behaved utility function whose value is bounded given the
scarcity of the resource.

Equation (8.11) shows that a necessary condition for optimally exploiting the
resource stock in finite time is a vanishing current value Hamiltonian, i.e.,
U(qT ) = µT qT has to have a solution. Thus, assuming resource exploitation
in finite time, equations (8.11) and (8.7), U ′(qt) = µt, imply that one of the
following conditions has to hold58

1. µT finite, qT = 0 and U(0) = 0 or (8.15)

2. µT finite, qT > 0 and U ′(qT ) =
U(qT )

qT
. (8.16)

Assuming an increasing and strictly concave utility function, average utility
cannot equal marginal utility if U(0) ≥ 0. In this case, it has to hold that
qT = 0 for finite time termination.59 If U(0) < 0, condition (8.16) can
be satisfied. The planner has an incentive to stop resource extraction at a
strictly positive flow level before his objective function becomes negative. In
fact, for U(0) < 0 stopping resource extraction in finite time at a level qT > 0
is the only solution because U(0) ̸= 0 and equation (8.12) cannot be satisfied
as extraction approaches zero or any nonnegative value.

Summarizing our findings, the Euler equation (8.6) shows that the optimally
controlled resource flow falls over time. It falls faster the more impatient we
are, and it falls slower the more we like to smooth consumption over time.
In the nonrenewable resource problem, equation (8.8) shows that we can

58We can rule out a third potential case

3. qT = 0, lim
t→T

µT qT → c ∈ IR++, U(0) = c and lim
q→0

U ′(q) = ∞. (8.14)

Because of the finite extraction time we evaluate the shadow value function on the compact
interval [0, T ] so that µT has to be finite as the Maximum Principle stipulates that the
shadow price path is continuous.

59We will return to the issue what happens if U(0) > 0 in section 8.7. In short, a finite
time termination of the planning horizon cannot be optimal. However, the resource might
nevertheless be optimally extracted in finite time as the result of the internal boundary
condition that we skipped over in the present section. Despite the fully exploited resource,
the planner wants to continue the program because U(0) still delivers positive utility and
adds to his or her welfare objective. This case is somewhat degenerate and the actual
extraction path will not differ from a path where an additive constant normalizes utility
to satisfy U(0) = 0.
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find an integrated version of the Euler equation for general welfare functions,
which is as close as we can hope to get in terms of a general closed-form
expression. The Euler equation only captures the time change of the ex-
traction flow, but it does not pin down the initial level of extraction. The
terminal condition RT ≥ 0 implies that we have to use up all of the resource
over the optimal time horizon (equation 8.10). At the present level of gen-
erality, full exhaustion of the resource can either happen in finite time, or
resource use might be stretched over an infinite time horizon. As long as
a continuously differentiable utility function is positive, strictly increasing,
and concave, resource use will continuously approach zero. If that happens
in finite time, we have qT = 0, otherwise resource use will approach zero in
the long-run limT→∞ qT = 0. If utility becomes negative for a low extraction
rate, the planner will optimally terminate resource use in finite time at a
strictly positive level of the flow.

8.4 Power utility – the eternal stretch

We now analyze the optimal resource extraction problem (8.1) further under

the assumption that utility takes the form U(qt) =
q1−η
t

1−η
with 0 < η < 1. The

utility function exhibits the constant elasticity of intertemporal substitution
η−1, or the coefficient of relative risk aversion η = RRA(qt) = −U ′′(qt)

U ′(qt)
qt. We

call it a power utility function because it differs by an additive constant from
the common form usually referred to as CIES or CRRA (see Section 8.8).
In typical intertemporal optimization problems, an affine transformation60 of
the utility function does not change the solution. However, this reasoning
changes when the time horizon is endogenous, as in our case. Then, the zero
level of utility becomes meaningful (see Sections 8.6-8.8).

Then Hamiltonian associated with problem (8.1) under power utility is

Hc(qt, µt) =
q1−η
t

1− η
− µt qt

60An affine transformation multiplies the utility function with a constant and adds
another constant. The multiplicative constant has to be the same over time, the additive
constant can be time-dependent.
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and the first two necessary conditions for an interior solution are

∂Hc

∂qt
= q−η

t − µt
!
= 0 ⇒ qt = µ

− 1
η

t

∂Hc

∂Rt

= 0
!
= ρµt − µ̇t ⇒ µt = µ0e

ρt

delivering

qt = µ
− 1

η

0 e−
ρt
η . (8.17)

In particular, we learn that q0 = µ
− 1

η

0 , illustrating how finding the initial
shadow value links to finding the initial level of the extraction rate. Alter-
natively, we obtain equation (8.17) by integrating the Euler equation (8.6),
recognizing that RRA(qt) = η is constant. As a consequence, the interpre-
tation of the determinants ρ and η governing the extraction flow coincides
with our discussion of equation (8.6).

Now we have to find the initial level of the extraction rate (or shadow value).
We have already shown that the resource has to be fully extracted by the
terminal time (equation 8.10). We still have to determine the terminal time
to use equation (8.10) to pin down the initial extraction level. We start
by checking the conditions for a possible exploitation in finite time. Equa-
tion (8.15) requires that

qT = 0 and U(0) =
01−η

1− η
!
= 0.

The second condition is satisfied (given η < 1), but the first condition cannot
be satisfied because of the exponential decline of the extraction rate derived
in equation (8.17). If extraction was zero in the final period it has to be zero
in all periods, which we can intuitively rule out as a reasonable solution when
extracting a valuable resource. Formally, it would violate RT = 0. The prob-
lem can still have a solution with finite time exploitation if condition (8.16)
is met

qT > 0 and U ′(qT ) = q−η
T

!
=

q1−η
t

1−η

qT
=
U(qT )

qT
⇒ qT > 0 and 1− η = 1.

We excluded the corresponding case η = 0 early on in our derivation. For
η = 0 “maximizing” the (then linear) current value Hamiltonian delivers
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µt = 1 as the necessary condition for an interior solution. But we have
to keep in mind boundary solutions. For a positive discount rate ρ > 0,
µt = 1 is incompatible with the condition µt = µ0e

ρt on any interval [0, T ]
of finite length. Intuitively, if η = 0 consumption is perfectly substitutable
across periods. If the decision maker has a positive discount rate, there is no
reason to postpone any extraction. She will extract everything in the first
instant. Indeed, the solution to this problem is degenerate with immediate
extraction.61

We are left to test whether the necessary conditions can be satisfied with an
infinite extraction horizon. By equation (8.17), the extraction rate converges
to zero and satisfies the terminal condition (8.13), limT→∞ qT = 0. Then
limT→∞RT = 0 delivers equation (8.10) which translates into∫ ∞

0

qt dt =

∫ ∞

0

q0e
− ρt

η dt = −η
ρ
q0e

− ρt
η

∣∣∣∞
0

=
η

ρ
q0

!
= R0,

where we used equation (8.17) and q0 = µ
− 1

η

0 . We find

⇒ q0 =
ρ

η
R0 and µ0 =

(
η

ρR0

)η

⇒ qt =
ρ

η
R0e

− ρ
η
t and µt =

(
η

ρR0

)η

eρt,

which solves our extraction problem. The optimal initial resource use in-
creases resource availability R0 and the discount rate ρ. It falls with the
desire to smooth consumption over time η. Correspondingly, the speed at
which our optimal resource use declines increases with our discount rate and
falls with our desire to smooth consumption over time. The decision maker
will not fully exploit the resource in finite time. As in the general formula-
tion, the current value shadow price of the resource µt increases exponentially
at the discount rate, leaving the present value shadow price λt constant.

61With initial and terminal time T = 0 our formulation of the maximum principle is
not really equipped to solve the problem. But we observe that with q0 > 0 and ∂Hc

∂q0
≥ 0

as well as ∂Hc

∂qt
≤ 0 and qt = 0 for t > 0 we maximize the linear Hamiltonian with an

increasing shadow price starting at µ0 = 1. We also satisfy U ′(qT ) = 1
!
= qT

qT
= U(qT )

qT
as suggested above. The condition RT = 0 cannot be satisfied in zero but only instantly
after.
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8.5 Constant absolute risk aversion – running out

In the case of constant absolute risk aversion (CARA) utility takes the form
U(qt) = 1−e−aqt

a
, where a > 0 is the measure of absolute Arrow-Pratt risk

aversion a = −U ′′(qt)
U ′(qt)

.62 The Hamiltonian associated with problem (8.1)
becomes

Hc(qt, µt) =
1− e−aqt

a
− µt qt

and the first two necessary conditions for an interior solution are

∂Hc

∂qt
= e−aqt − µt

!
= 0 ⇒ µt = e−aqt (8.18)

∂Hc

∂Rt

= 0
!
= ρµt − µ̇t ⇒ µt = µ0e

ρt (8.19)

delivering µ0 = e−aq0 ⇔ q0 = − log(µ0)
a

and

⇒ e−aqt = µ0e
ρt ⇒ −aqt = log(µ0) + ρt

⇒ qt = − log(µ0) + ρt

a
= q0 −

ρ

a
t. (8.20)

Extraction falls linearly over time. It falls faster for a higher discount rate and
slower for a stronger desire to smooth consumption over time, here expressed
by the absolute measure a. The fact that extraction falls linearly already
suggests that the resource will be fully exploited in finite time. We note that
we can obtain equation (8.20) directly from our general result, equation (8.8),

finding that qt = U ′−1 (µ0 exp(ρt)) = − 1
a
log (µ0 exp(ρt)) = − log(µ0)

a
− 1

a
ρt.

Finite time exploitation requires that equation (8.15) or (8.16) hold. Starting
with equation (8.15) we find that

qT = 0 and U(0) =
1− e0

a
!
= 0,

62In the limit a → 0 we find lima→0
1−e−aqt

a = lima→0
1−e−aqt

1 = qt,where we use
L’Hospitals rule observing that both numerator and denominator approach zero in the
original expression. Thus for a → 0 the utility function corresponds to the linear case we
briefly discussed as the case η = 0 in the section 8.4 and, in particular, footnote 61
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which is satisfied. The finding qT = 0 implies that by equation (8.20)

0 = qT = q0 −
ρ

a
T ⇒ q0 =

ρ

a
T

⇒ qt =
ρ

a
(T − t). (8.21)

This reformulation of equation (8.20) fleshes out that we run down the re-
source at a linearly falling extraction rate hitting zero at the terminal time.
Note that T is still endogenous and will depend on ρ and a as well. In terms
of the shadow value we note that µT = e−aqT implies that µT = 1. We call the
terminal price of the resource, when extraction comes to an end, the choke
price. Here, the choke price is unity. This value is a shadow price measured
in utils. If we had a more seriously calibrated model, we could transform it
into consumption equivalents dividing by marginal utility.

We still have to find the terminal time T . Using the terminal condition we
find by equation (8.10)∫ T

0

qt dt =

∫ T

0

ρ

a
(T − t)dt =

ρ

a

[
Tt− t2

2

]T
0
=
ρ

a

T 2

2
!
= R0

⇒ T =

√
2aR0

ρ
.

The terminal time increases in the initial stock of the resources. The more
of a resource we have, the longer we want to stretch its exploitation time.
The terminal time horizon also increases with society’s desire to smooth con-
sumption over time expressed by the absolute aversion coefficient a. Finally,
the terminal time draws closer for a more impatient society with a higher
rate of pure time preference ρ.

Substituting our solution for the terminal time into equation (8.21) we obtain
the level of initial extraction and the fully specified solution for the extraction
rate

qt =

√
2R0

ρ

a
− ρ

a
t. (8.22)

Four times a resource stock R0 doubles initial extraction and the time to
full extraction.63 Such a change in the initial resource stock does not affect

63Given the linear reduction in extraction, this result is geometrically intuitive. The
area under the extraction curve is proportional to total resource use and this area is also
proportional to both initial extraction and extraction time.
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the rate at which optimal extraction declines. Four times the discount rate
doubles the initial resource use and cuts the time to full exploitation into half.
Four times the desire to smooth consumption over time, measured by a, cuts
initial resource use into half and doubles the time to full exploitation.

8.6 Constant absolute risk aversion – a variation

In typical intertemporal optimization problems, an additive constant in the
utility function does not change the solution. However, this reasoning changes
when the time horizon is endogenous. Then the zero level of utility becomes
meaningful. If we can add more periods with utility above zero we would
like to go on, if additional periods result in negative utility we stop. In
the case of constant absolute risk aversion (CARA), where the exploitation
time is finite, we therefore obtain a different solution if we add a constant, say
U(qt) =

1−e−aqt

a
+b. The parameter a > 0 still measures absolute Arrow-Pratt

risk aversion. This variation of Section 8.5’s setting changes the Hamiltonian
associated with problem (8.1) to

Hc(qt, µt) =
1− e−aqt

a
+ b− µt qt.

Because the constant b drops out in the derivatives of the Hamiltonian, the
first order conditions (8.18) and (8.19) do not change, still delivering

qt = − log(µ0) + ρt

a
= q0 −

ρ

a
t. (8.23)

The extraction rate still falls linearly over time at the same speed determined
by pure time preference and the desire to smooth consumption over time.

Finite time exploitation requires that one of the terminal conditions (8.15)
or (8.16) holds. Starting with equation (8.15) we find that

qT = 0 and U(0) =
1− e0

a
+ b

!
= 0,

which is no longer satisfied unless b = 0. Equation (8.16) is satisfied if

qT > 0 and U ′(qT ) = e−aqT !
=

1−e−aqT

a
+ b

qT
=
U(qT )

qT

⇒ qT > 0 and
(1
a
+ b
)
eaqT − qT =

1

a
. (8.24)
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This equation does not have a solution for all, but for at least some pa-
rameterizations of the problem. For example, let a = e−1 ≈ 0.37 and
b = 2− e ≈ −0.71. Then the condition (8.24) turns into

(e+ 2− e) e
qT
e − qT = e ⇒ 2 e

qT
e − e = qT ⇒ qT = e. (8.25)

The finding qT = e implies by equation (8.23) that

e = qT = q0 −
ρ

a
T ⇒ q0 =

ρ

a
T + e

⇒ qt =
ρ

a
(T − t) + e. (8.26)

The time horizon T is still endogenous and the reformulation of equation
(8.20) reflects that, once again, extraction will fall linearly until the stopping
time. In contrast to the earlier setting, at the stopping time extraction will be
strictly positive (and then drop instantaneously to zero). The shadow value
at the stopping time is µT = e−aqT = e−ae, dropping the choke price below
unity. Given that we have not changed marginal utility, this comparison
to the previous setting is somewhat meaningful, as it would also hold after
converting utils into consumption equivalents.

We still have to find the terminal time T . Using the terminal condition we
find by equation (8.10)∫ T

0

qt dt =

∫ T

0

ρ

a
(T − t) + e dt =

ρ

a

T 2

2
+ eT

!
= R0

⇒ T =
a

ρ

(√
e2 + 2

ρ

a
R0 − e

)
. (8.27)

We picked the positive root because the terminal time has to be positive.
Comparing to our earlier objective function where b = 0, we find that the

negative b reduces the time until terminal extraction, which was
√

2aR0

ρ
=

a
ρ

√
2ρ
a
R0 in Section 8.5. The intuition is clear, society no longer considers low

rates of extraction worthwhile. Given the same optimal decline of extraction
over time, it starts at a higher extraction rate and runs out of the resource
earlier. To calculate the initial rate of extraction, we substitute the terminal
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time into our solution for the extraction rate in equation (8.26) and find

qt =
ρ

a

(
a

ρ

(√
e2 + 2

ρ

a
R0 − e

)
− t

)
+ e

=

√
e2 + 2

ρ

a
R0 −

ρ

a
t. (8.28)

Comparing the result to our original CARA setting, where equation (8.22)
found qt =

√
2R0

ρ
a
− ρ

a
t, we confirm a higher initial extraction rate. We

note that initial extraction increases by less than extraction in the terminal
period, which is now e rather than 0. With the present preferences, four
times the initial resource stock R0 increases initial extraction and terminal
time by less than a factor 2. This reduction in sensitivity compared to the
earlier setting also holds for changes in the rate of time preference and the
desire to smooth consumption over time.

8.7 More on CARA utility & terminal conditions

In Section 8.6 we discuss a particular solution to the optimal extraction prob-
lem under our variation of CARA utility. The example solves the terminal
condition (8.24)(1

a
+ b
)
eaqT − qT =

1

a
⇔ 1

a
+ b =

1

a
e−aqT + qT e

−aqT . (8.29)

We now discuss this equation more generally. First, this equation has no
solution for b > 0. We confirm this claim as follows. Using the formulation
on the right, we observe that the left side of the equality increases strictly
in b. By contrast, the right side of the equality falls in qT

∂

∂qT

(
1

a
e−aqT + qT e

−aqT

)
= −e−aqT + e−aqT − aqT e

−aqT = −aqT e−aqT ≤ 0,

assuming a consumption smoothing preference a > 0. From section 8.5 we
know that equality (8.29) is satisfied for b = qT = 0. Thus, it cannot have a
solution where b > 0 and qT remains nonnegative.

Second, we establish that the terminal condition (8.29) has a solutions only
for − 1

a
< b ≤ 0. Then b reduces the left side of the equality (8.29) to some
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positive value (lower than the solution with b = 0 = qT ). Increasing qT ,
the right side of the equality falls strictly monotonically to zero, so that
equation (8.29) will have a (unique) solution. For b ≤ 1

a
the left side of the

equality turns negative (or zero), which cannot be met by the right side (with
finite resource use). We conclude that (only) for − 1

a
< b ≤ 0 it is optimal to

terminate the time horizon T . We note that in the case where b < − 1
a
utility

is always strictly negative independent of the extraction level. The social
planner would maximize the objective by not extracting at all, a degenerate
solution that our Maximum Principle does not pick up.

What happens for b > 0? To understand this case, we have to revisit the
first order condition paying more careful attention to the resource constraint.
For an interior solution equation (8.18) gave us

∂Hc

∂qt
= e−aqt − µt

!
= 0 ⇒ µt = e−aqt . (8.30)

However, if the constraint is binding, then qt = 0 and

∂Hc

∂qt
= e−aqt − µt

!

≤ 0 ⇒ µt ≥ e−aqt . (8.31)

Combined with µt = µ0e
ρt (equation 8.19) and accordinly µ0 = e−aq0 , we

obtain the boundary solution qt = 0 and

⇒ e−aqt ≤ µ0e
ρt ⇒ qt ≥ q0 −

ρ

a
t,

which is satisfied once extraction hits zero (qt = 0 ≥ q0 − ρ
a
t). Thus, we have

zero extraction after t = T , also as an interior solution to our optimal control
problem. Under standard CARA preferences in Section 8.5, U(0) = 1−e0

a
= 0.

Once extraction is zero, it does not matter whether we keep counting utility
beyond T . Even if we were to impose an infinite planning horizon, our
solution under CARA utility would remain the same. Instead of stopping
the problem at T , we would find that we hit the boundary condition and
that qt = 0 is the optimal extraction path for t > T . This invariance of the
solution to a planning horizon beyond the time where optimal extraction hits
zero holds under standard CARA utility because U(0) ≥ 0 when we hit our
constraint qt ≥ 0. Under our modification with b > 0 and, thus, U(0) > 0,
the social planner continues to derive positive utility even when extraction is
zero. Then, she will not terminate the welfare maximization program even
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at the point where society runs out of the resource. However, what happens
beyond the point where society runs out of the resource does not change. The
fact that we keep counting utility is meaningless as the extraction path does
not change. Optimal extraction in the CARA variation problem with b > 0
is governed by the same equation (8.22) as in the original CARA setting.

The terminal time
√

2aR0

ρ
is now the endogenous time where extraction hits

zero, but no longer the formal stopping time.

Such an invariance no longer holds for a variation of CARA utility that results
in U(0) < 0. In our example of Section 8.6, b ≈ −0.71 turns utility negative
at a zero extraction rate. For example, there can be a fix cost arising from an
environmental externality related to mining or to keeping an oil-pipeline open
that renders extraction of quantities below some threshold inefficient. Then,
it becomes crucial for the social planner to terminate the extraction before
the extraction rate hits zero, as we observed in equations (8.25) and (8.26).

8.8 CRRA utility

We now return the class of utility functions exhibiting constant intertemporal
elasticity of substitution (CIES), or constant relative risk aversion (CRRA).
Adding the constant − 1

1−η
to Section 8.4’s power utility delivers the more

common form U(qt) =
q1−η
t −1

1−η
, η > 0. Adding this constant ensures that the

utility function function converges to the logarithm for η → 1. The CARA
variation already taught us that such an additive constant is not entirely
innocent if the planning horizon is finite and endogenous. Now we will see
that the additive constant − 1

1−η
can change a solution that stretches the

resource to infinity, as in our power function formulation of Section 8.4, into
a solution with full exploitation in finite time.

The Hamiltonian associated with problem (8.1) under CRRA utility is

Hc(qt, µt) =
q1−η
t − 1

1− η
− µt qt

and the necessary conditions remain the same as in Section 8.4 because the
additional constant drops out in the derivatives. Equation (8.17) still de-

scribes the Euler equation qt = q0e
− ρt

η . Yet, we now have a solution with full



8.8 CRRA utility 226

exploitation in finite time as the terminal condition (8.16) changes to

U ′(qT ) = q−η
T

!
=

q1−η
t −1

1−η

qT
=
U(qT )

qT
⇔ q1−η

T
!
=
q1−η
t − 1

1− η

⇔ η q1−η
T = 1 ⇔ qT = η−

1
1−η . (8.32)

We note that this solution also holds in the limiting case of η → 1, which gives
rise to log-utility and qT = e, the Euler number. The CRRA utility functions
start out negative and eventually turn positive for all η > 0. Evaluating
utility at the terminal extraction rate (equation 8.32), we find U(qT ) =

1
η
>

0. The social planner stops extraction when utility is still strictly positive.
Combing the Euler equation with result (8.32) delivers

η−
1

1−η = qT = q0e
− ρT

η ⇒ q0 = e
ρT
η η−

1
1−η . (8.33)

By equation (8.10) we find the terminal extraction time solving∫ T

0

qt dt =

∫ T

0

q0 e
− ρt

η dt = −η
ρ
q0 e

− ρt
η

∣∣∣T
0

!
= R0

⇒ η

ρ
q0

(
1− e−

ρT
η

)
=
η

ρ
e

ρT
η η−

1
1−η

(
1− e−

ρT
η

)
!
= R0

⇒ e
ρT
η = 1 +

ρ

η
R0η

1
1−η

⇒ T =
η

ρ
log
(
1 + ρ η

η
1−ηR0

)
. (8.34)

In the CRRA setting, the time of resource exhaustion grows logarithmically
in the initial resource stock R0.

Having characterized the terminal extraction period, equation (8.33) yields

q0 =
(
1 +

ρ

η
R0η

1
1−η

)
η−

1
1−η = η−

1
1−η +

ρ

η
R0. (8.35)

and the fully specified solution for the extraction rate

qt =
(
η−

1
1−η +

ρ

η
R0

)
e−

ρt
η . (8.36)

Extraction starts η−
1

1−η higher than in Section 8.4’s power function example,
and it ends in finite time precisely when extraction has reached this level
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η−
1

1−η . Plotting this increase in initial (and terminal) extraction we find
that it is decreasing and convex in η. The higher the desire to smooth
consumption over time, the lower the initial and the terminal extraction rate.
Obviously, this result requires that the time to full exploitation increases in
the consumption smoothing parameter. The planner spreads and smoothes
consumption over more generations.
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9 Nonrenewable Resources: Market-Based Ex-

traction

This chapter analyzes resource extraction in a market setting and compares
the resulting intertemporal resource allocations to the social optimum. Our
first setting is a representative resource extraction firm that acts as a price
taker (competitive market economy). We find that the decentralized market
solution yields a socially optimal resource allocation. Geological resources
are often state owned and occurrence is sometimes limited to a few regions.
Therefore, market power has played an important role in resource extraction,
and market power is still being exercised today in several markets. We an-
alyze the implications of market power in a monopolistic setting. We prove
a famous saying that the “monopolist is the conservationist’s best friend”
and exhausts the resource later than a competitive economy (if extraction
happens in finite time). After comparing the different market structures, we
extend our setting to account for stock-dependent resource extraction costs
as well as exogenous technological progress. Finally, we evaluate a (gross)
revenue and a profit tax regarding their abilities to appropriate (part of) a
firm’s resource rent without distorting the market.

9.1 Extraction by a Competitive Firm

Constant marginal extraction costs. Instead of maximizing welfare,
we now analyze a representative firm’s profit maximization problem. For
the moment, we assume constant extraction costs c per unit of the resource
extracted. Then, the firm’s dynamic profit maximization problem is

max
{qt}t∈[0,T ]

∫ T

0

(pt − c)qte
−rtdt s.t. Ṙt = −qt, R0 = R̄, RT ≥ 0, T free

giving rise to the (current value) Hamiltonian

Hc(pt, qt, µt) = (pt − c)qt + µt(−qt) = (pt − µt − c)qt.

This Hamiltonian is linear in the control. As a result, the firm will either
be indifferent to the amount it extracts (interior solution) or it will extract
everything (pt > µt − c) or nothing (pt < µt − c), a boundary solution. In
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most markets of interest, extraction is positive and we do not exhaust the
resource in an instant. Thus, we will assume an interior solution. Section 9.2
will add a demand side story to the argument why the price mechanism in
the market equilibrium will usually imply an interior solution, at least until
the resource is fully exhausted over time. We obtain the necessary conditions
for an interior solution as

∂HC

∂qt
= pt − qt − c = 0 ⇒ µt = pt − c (9.1)

∂HC

∂Rt

= rµt − µ̇t = 0 ⇒ µ̇t

µt

= r ⇒ µt = µ0e
rt, µ0 ≥ 0 (9.2)

The resulting Euler is

d
dt
(pt − c)

pt − c
=

ṗt
pt − c

= r. (9.3)

We refer to the difference of price and extraction costs as the rent of the
resource. This resource rent is also called a royalty. Equation (9.3) states
that the resource rent rises at the rate of interest. This finding is referred to as
“Hotelling’s rule” after the economist and mathematician Harold Hotelling
(1895-1973) who published this rule in 1931. In the absence of extraction
costs, it states that the price of the resource has to grow at the rate of interest.
In the presence of extraction costs, it states that only the net revenue from
extracting the resource has to grow at the rate of interest.

We can also conceive Hotelling’s rule as an arbitrage argument. Assume

d
dt
(pt − c)

pt − c
> r.

Then, the firm is better off not extracting today, but extracting tomorrow
because the net revenue from the resource grows faster than the firm’s op-
portunity cost, borrowing money from the bank (if needed). In case of the
reverse inequality, the firm would extract all of the resource today. By ex-
tracting everything today and depositing the savings on a bank account it
makes larger profits compared to waiting and selling some of the resource to-
morrow. Implicitly, also the arbitrage argument assumes an interior solution,
i.e., an equilibrium where the resource flow is positive in both periods.
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Increasing marginal extraction costs. More generally, we assume that
marginal extraction costs increase in the level of the extraction flow. Extract-
ing large amounts in a short period of time is more expensive than doing so
over a longer period of time (e.g., more or more expensive machinery will be
needed when extracting a lot of the resource in parallel than when empty-
ing a reservoir more slowly over time). We denote absolute extraction costs
by C(qt) and assume that C ′(qt), C

′′(qt) > 0, where the second condition
captures increasing marginal extraction costs. For comparison to the above
scenario with constant marginal extraction costs we let c(qt) =

C(qt)
qt

denote
the average cost of extraction. We distinguish two cases. In the first case,
we assume that also average costs increase c′(qt) > 0. In the second case,
average costs can initially fall before they increase (c′(0) < 0, c′′(qt) > 0),
which is typical in the case of fix costs. We note that these are “per period
fix costs” and not “sunk fix costs” that are only required once at the be-
ginning of the extraction program. Such one time costs would not alter the
analysis unless they are so large that extraction should not take place at all.
We can think of per period fix costs either as machinery and man power that
has to run independently of the extraction level or as an approximation to
repeated drilling to tap sequentially into a “continuum” of reservoirs. The
firm’s maximization problem becomes

max
{qt}t∈[0,T ]

∫ T

0

(
pt − c(qt)

)
qte

−rtdt s.t. Ṙt = −qt, R0 = R̄, RT ≥ 0, T free.

The Hamiltonian Hc(pt, qt, µt) =
(
pt − µt − c(qt)

)
qt is no longer linear and

the firm can set the extraction rate to satisfy the first order conditions for
an interior optimum

∂HC

∂qt
= pt − µt − c(qt)− c′(qt)qt = 0 ⇒ µt = pt − c(qt)− c′(qt)qt (9.4)

or, using absolute extraction costs instead, µt = pt − C ′(qt), where we used
that c(qt) + c′(qt)qt = C ′(qt) > 0. Together with equation (9.2) we now find
the Euler equation

d
dt
(pt − C ′(qt))

pt − C ′(qt)
=
ṗt − C ′′(qt)q̇t
pt − C ′(qt)

=
ṗt −

(
2c′(qt) + c′′(qt)qt

)
q̇t

pt − c(qt)− c′(qt)qt
= r. (9.5)

Even though the equation looks more complicated, the interpretation remains
the same. The net revenue or resource rent grows at the rate of interest. Here,
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the resource rent grows not only because of a possible price increase, but also
because of a possible change in the extraction rate over time, which affects
the extraction costs. If the extraction rate falls over time, future extraction
will be cheaper. The resulting increase in net revenue over time partially
offsets the required price increase that would have to prevail in the absence
of extraction costs.

Terminal conditions. The firm will stop extraction in finite time if the
current value Hamiltonian is zero

Hc(pT , qT , µT ) =
(
pt − µt − c(qt)

)
qt

!
= 0

⇔ µT = pT − c(qT ) or qT = 0. (9.6)

By equation (9.4), the first condition is equivalent to

pT − c(qT )− c′(qT )qT = µT = pT − c(qT )

⇔ c′(qT )qT = 0.

In the case of increasing average costs, c′(qt) > 0, it must hold that qT = 0.
However, in the case of fix costs, c′(x) cuts zero from below and we can have
a solution where qT > 0 and the firm stops operating when the resource flow
is at the minimum of the average costs.

In a market setting, we can explore the choke price a little further. Recall
that the choke price is that price of the resource where exploitation stops.
Let p(q) denote inverse demand; we are interested in the demand during the
final period, but for convenience we assume that demand is stationary. In the
absence of fix costs, we have c′(qt) > 0, qT = 0 and a choke price p(qT ) = p(0).
Here, the choke price is simply the maximal willingness to pay for the first
unit of the resource. The final period’s resource rent is p(0) − C ′(0) or, by
equation (9.4), this shadow value is µT = p(0) − c(0) because qT = 0. We
summarize that without fix costs (continously increasing average costs) we
have the teminal conditions

qT = 0 and µT = p(0)− c(0). (9.7)

In the presence of fix costs, we stop extraction at the point q∗ > 0 where
average costs are minimized c′(q∗) = 0. At this point average costs equal
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marginal extraction costs, c(q∗) = C ′(q∗).64 Assuming that demand falls in
the price, we find a lower choke price p(q∗) < p(0) and a last period resource
rent of p(q∗)− C ′(q∗) = p(q∗)− c(q∗).

Now let us assume that it is not optimal to exhaust the resource in finite
time. From our necessary first order conditions, equations (9.2) and (9.4),
we find

pt − c(qt) = µ0e
rt + c′(qt)qt. (9.8)

In the case of increasing average costs we know that c′(qT )qT ≥ 0. Then, as
µ0e

rt grows to infinity, so does pt − c(qt). In the case of fix costs, we already
know that it cannot be optimal to let the extraction rate approach zero
smoothly. Yet, the absence of fix costs is necessary to even consider an infinite
horizon for extraction.65 Thus, a solution that stretches resource extraction
over an infinite time horizon can only exist if the average net revenue from
extracting a unit of the resource converges to infinity. In particular, there is
no finite choke price. We should think of this case as an approximation to a
world where the first unit of a resource is extremely valuable to sustain life
or the economy. Of course, we cannot avoid that, eventually, the resource
flow approaches zero.

Formally, we derive this rather intuitive insight as follows. If finite time
extraction is not optimal, the present value Hamiltonian has to converge to
zero and we have the terminal condition

lim
T→∞

e−rTHc(pT , qT , µT ) = lim
T→∞

e−rT
(
pT − µT − c(qT )

)
qT = 0

⇒ lim
T→∞

e−rT
(
pT − c(qT )

)
qT = lim

T→∞
µ0qT .

Thus, either limT→∞ qT = 0 or

lim
T→∞

(
pT − c(qT )

)
= lim

T→∞
µ0e

−rT ⇒ lim
T→∞

c′(qT )qT = 0 (9.9)

64From c′(q) = 0 we obtain the condition that C ′(q)q−C(q) = 0 ⇒ C ′(q) = C(q)
q = c(q).

In the static micro theory of the firm, the supply curve would start at this point: below
it, the firm makes a loss, noting that for such a static competitive firm it is p = C ′(q). By
contrast, our firm sets the price equal to marginal costs plus resource rent and, thus, still
has strictly positive profits. It stops producing when the marginal profit no longer returns
the proper rent (which increases over time).

65A non-renewable resource flow cannot stay above a strictly positive number over an
infinite time horizon because it would require an infinite supply of the resource. Thus, in
the case of fix costs, we do not expect to find an infinite extraction horizon to start with.
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by equation (9.8). Let q∗ > 0 denote again the minimum of the average
cost curve that the firm would approach in the long run (if limT→∞ qT > 0).
However, assuming a continuous extraction stream, there exist ϵ < q∗ and a
time T̄ at which extraction is within an ϵ-envelope of q∗ so that we have∫ ∞

0

qt dt ≥
∫ ∞

T̄

qt dt ≥
∫ ∞

T̄

(q∗ − ϵ) dt = ∞, (9.10)

contradicting our assumption that the resource is scarce. Summarizing our
result, we find that resource use being stretched over an infinite time horizon
requires

lim
T→∞

qT = 0 and lim
T→∞

pt − c(qt) → ∞. (9.11)

Profits. In any of these scenarios of finite or infinite time exhaustion, equa-
tion (9.8) implies that the firm’s profits are strictly positive. Why? Because
the amount of the resource is fix and it is scarce. Our firm is selling some-
thing that cannot be reproduced. How does our result fit into the typical
competitive market setting where firms cannot make positive profits? We
should think of the resource as a factor of production. Just like capital or la-
bor the resource is paid a rent, which is precisely our resource rent or royalty.
In the standard general equilibrium setting, the firm would not be allowed
to own the resource, and it would pay the resource owner a rent. Then, the
firm itself is back to zero profits and the resource owner gets the rent from
owning a scarce commodity.

9.2 Competitive Market Equilibrium & Comparison to
Social Optimum

Take 1: Money metric utility generating exogenous demand. As-
sume that utility is money-metric and ρsocial = rmarket. In this partial analysis
of the resource market, the representative agent’s utility can be expressed as

U(qt) =

∫ qt

0

p(q)dq ⇒ U ′(qt) = p(qt) = pt. (9.12)
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Keeping in mind that U ′(qt) = pt, we compare the socially optimal and the
market’s necessary conditions

HC
social = U(qt)− µtqt ↔ HC

firm = (pt − µt)qt − C(qt)

∂HC
social

∂qt
= U ′(qt)− µt = 0 ↔

∂HC
firm

∂qt
= pt − µt − C ′(qt) = 0

∂HC
social

∂Rt

= 0 = ρµt − µ̇t ↔
∂HC

firm

∂Rt

= 0 = rµt − µ̇t,

Without extraction costs , U ′(qt) = pt is enough to see that the necessary
dynamic equations of socially optimal extraction and those of a competi-
tive market coincide.66 For example, in our CARA utility example from
Section 8.5, we find that

U(qt) =
1− e−aqt

a
⇒ U ′(qt) = e−aqt ≡ p(qt)

so that inverse demand is p(q) = e−aq, or actual demand is

⇒ q = − log(p)

a
= D(p).

Combining the demand equation with the firm’s Euler equation (Hotelling’s
rule) in the absence of extraction costs delivers

⇒ qt = − log(pt)

a
= − log(p0 exp(rt))

a
= − log(p0)

a
− r

a
t,

which – up to the initial condition – is the same equation of motion for the
extraction rate as in the social optimum.

Without extraction costs, the firm optimally exhausts the resource in finite
time only if qT = 0.67 Then, the representative firm will stop production
when µT = p(0)−c(0). Thus, in the absence of extraction costs, we find that

66In the market case, the Hamiltonian is once again linear without extraction costs. We
rely on the assumption of an interior solution, which now links directly to our finding
that the demand side requires U ′(qt) = pt, where usual demand functions make boundary
solutions unlikely until the resource is fully exhausted.

67The current value Hamiltonian is proportional to pt = µt and qt. Only the latter can
be zero if
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the firm’s terminal condition in the competitive market is µT = p(0) = U ′(0).
Recalling our discussion of equations (8.15) and (8.16) in the social planner
setting we know that also the social planner sets qT = 0 in the last period
because the corresponding utility function satisfies U(0) =

∫ 0

0
p(q)dq = 0.

Thus, the social planner’s terminal condition is, by equation (8.2), µT =
U ′(0) = p(0). We have shown that in the case of finite time exhaustion, the
necessary conditions for socially optimal extraction coincide with the neces-
sary conditions generated by a representative firm who faces a corresponding
demand function. In the case where it is optimal to stretch resource use over
the infinite horizon, equation (8.13) in the social planner setting and equa-
tion (9.11) for the competitive firm both impose the same terminal condition
that limT→∞ qT = 0.

With extraction costs , we have to integrate the extractions costs into
the planner’s utilty function. Assume utility U(qt) = B(qt) − C(qt) is split
between benefits B(qt) that derive from consuming the resource and (total)
extraction costs C(qt). Only the first of the first order conditions directly
depends on extraction costs and it becomes

∂Hc
social

∂qt
= B′(qt)− C ′(qt)− µt = 0 ↔

∂Hc
firm

∂qt
= pt − µt − C ′(qt) = 0.

Again, the dynamic equations in the social optimum coincide with those of
the market equilibrium, recognizing that the consumer price only reflects the
consumer’s marginal benefits B′(qt).

Assumption 1 : We assume the absence of per period fix costs, i.e., C(0) = 0.
The we have increasing average costs c′(q) > 0 and the extraction flows will
continuously approach zero. For the firm, we derived the stopping condition
µT = p(0) − c(0). Because U(0) = B(0) − C(0) = 0, the social planner’s
terminal condition, by equation (8.2), equals µT = U ′(0) = B′(0)− C ′(0) =
p(0) − C ′(0) = p(0) − c(0), which coincides with the stopping condition of
the firm. In the case resource use is stretched to infinity, we find once again
limT→∞ qT = 0 as the coinciding terminal condition in both settings.

In our CARA utility example, we could split the overall welfare into a
part that represents consumer benefits and a part that represents extrac-
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tion costs68

B(qt) =
1− (1 + γ)e−aqt

a
⇒ B′(qt) = (1 + γ)e−aqt ≡ p(qt) and

c(qt) =
1− γe−aqt

a
⇒ c′(qt) = γe−aqt ,

not changing the social optimum from Section 8.5 as we keep U(qt) = B(qt)−
c(qt) =

1−e−aqt

a
and, in particular, U ′(qt) = e−aqt . The resulting demand side

relation between price and quantity is

inverse demand pt = (1 + γ)e−aqt

demand qt = −
log
(

pt
1+γ

)
a

= Dγ(pt).

Recall from equation (9.4) that µt = pt − c′(qt) and so the firm sets pt =
µt + c′(qt) = µ0 exp(rt) + γe−aqt (integrated form of the Euler equation 9.5).
Combining this equation with the consumer side we find

B′(qt) = (1 + γ)e−aqt = p︸ ︷︷ ︸
consumer

t = µt + c′(qt) = µ0 exp(rt) + γe−aqt︸ ︷︷ ︸
firm

⇒ e−aqt = µ0 exp(rt) ⇒ qt = − log(p0)

a
− r

a
t.

Again, it is the same equation of motion as in the social optimum. The
(coinciding) terminal condition µT = p(0) − c(0) fixes the initial shadow
value to µ0 =

(
p(0)− c(0)

)
e−rT . To find p0 we have to integrate the resource

use over time as in Section 8.5 or compare the above equation to that section’s
result, equation (8.22) stating qt =

√
2R0

ρ
a
− ρ

a
t. Replacing time preference

with market interest, we find

p0 = exp
(
− a
√

2R0
r
a

)
= exp

(
−
√
2R0ar

)
.

The initial resource price falls in the resource abundance and the interest
rate. Why does the initial price fall for a higher interest rate? Our terminal
condition sets the price in the last period. With a higher interest rate, the
price increases faster over time and the resource use falls more quickly. Thus,

68Given the CARA functional form, the resulting cost function has decreasing marginal
costs. The decomposition merely serves as a convenient illustration, not as a good example
for a cost function.
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we start out with a higher extraction rate at a lower price level. The expres-
sion also seems to suggest that the initial price would fall in the consumption
smoothing preference. However, the price pt is measured in utils and as we
vary the parameter a we change the utility function and the meaning of a
“util”. Thus, we cannot meaningfully interpret the expression for a variation
of a.69

Assumption 2 : We assume C(0) > 0. Then, the firm stops resource extrac-
tion at the point q∗ > 0 where average costs are minimized c′(q∗) = 0. At
this point average costs equal marginal extraction costs, c(q∗) = C ′(q∗) or

C ′(qT ) =
C(qT )

qT
. (9.13)

For the social planner, we find that U(0) = B(0) − C(0) < 0 and equa-
tion (8.16) requires that the social planner’s terminal condition is

U ′(qT ) =
U(qT )

qT
⇒ B′(qT )− C ′(qT ) =

B(qT )− C(qT )

qT

⇒ C ′(qT ) =
C(qT )

qT
−
(B(qT )

qT
−B′(qT )

)
. (9.14)

In general, the terminal condition (9.13) and (9.14) differ. For a benefit with

B(0) = 0, B′(q) > 0, and B′′(q) < 0, we have the condition C ′(qT ) <
C(qT )
qT

69To permit a more meaningful investigation of the initial price, we have to convert it
into present consumption equivalents. Note that U ′(q0) characterizes the util-value of the
marginal consumption unit in period 0. If we invert this relation it gives us the value of a
util in consumption equivalents, here, in terms of units of the resource. We find

p̃0 =
p0

U ′(q0)
= exp

(
−
√
2R0ar

)
a
(
1− exp

(
− a(

√
2R0

r
a )
))−1

= a
(
exp

(√
2R0ar

))
− 1
)−1

A short calculations shows that

d

da

(
exp

(√
2R0ar

))
− 1
)−1

> 0 ⇔ exp(x)
[
1− x

2

]
− 1 > 0,

where x =
√
2R0ar. Plotting the function, is starts out positive and eventually turns nega-

tive (around x = 1.6). As the intertemporal consumption smoothing parameter increases,
initial extraction falls, and its marginal value increases. Given we divide by marginal value
to translate utils into consumption equivalents, we find that eventually the value of a unit
of the resource in consumption equivalents falls.



9.2 Competitive Market Equilibrium & Comparison to Social Optimum238

because B(qT )
qT

> B′(qT ). Then the social planner would terminate at a lower
resource flow than the competitive firm.

Take 2: Intertemporally optimizing consumer. Now let us explicitly
model the dynamic decision problem of a representative agent. For simplicity,
we continue to assume that the consumer is a direct user of the resource, e.g.,
oil for driving his or her car. Moreover, we assume that the consumer has
a quasi-linear utility function V (xt, qt) = xt + U(qt) where xt represents the
monetary value of all other consumption goods. The assumption that utility
is linear in x implies that we are not interested in how the agent’s overall well-
being affects the resource use.70 We are interested in the resource market, a
small part of the economy and we merely model how the consumer responds
to price changes in the resource everything else equal. The consumer is
equipped with initial wealthW0, which earns interest over time at rate r. She
spends her wealth on the resource and the money-metric consumption bundle
reflecting other goods, whose price we normalize to unity. The consumer’s
optimization problem is

max
qt,xt

∫ T

0

(
xt + U(qt)

)
e−ρt dt

s.t. Ẇt = rWt − xt − ptqt (equation of motion)

WT ≥ 0 (terminal condition)

W0 = given (initial wealth).

We left open the terminal condition as it governs her overall expenditures
rather than the resource in particular. It might be interesting to realize the
similarity between the consumers consumption expenditure problem (“wealth
extraction”) and the original resource extraction problem. The main differ-
ence is that the wealth re-grows as long as it is not completely exhausted.
The consumer’s (current value) Hamiltonian is

HC(qt, µt) = xt + U(qt) + µt(rWt − xt − ptqt).

70Precisely, we are abstracting from wealth and overall consumption affecting the agent’s
marginal utility through either of two channels. First, the wealth and resulting overall
consumption level impacts marginal utility derived from “other consumption” and affects,
in particular, the equilibrium interest rate. Second, changes in “other consumption” can
directly interact with the marginal utility derived from resource use. Our quasi-linear
utility function allows us to focus on the direct first order partial equilibrium effects that
result from saturation in or scarcity of the resource flow.
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The resulting necessary conditions for an optimal expenditure program as-
suming an interior solution are

∂HC

∂xt
= 1− µt

!
= 0 ⇒ µt = 1 (9.15)

∂HC

∂qt
= U ′(qt)− µtpt

!
= 0 ⇒ U ′(qt) = ptµt (9.16)

∂HC

∂Wt

= rµt
!
= ρµt − µ̇t ⇒ µt = µ0e

(ρ−r)t (9.17)

∂HC

∂µt

= rWt − xt − ptqt
!
= Ẇt

Equations (9.15) and (9.17) imply

1 = µt = µ0e
(ρ−r)t ⇒ ρ = r. (9.18)

Modeling the household’s dynamic choice problem explicitly implies that
market interest r equals the representative agent’s rate of time preference
ρ, a finding we simply assumed in our earlier approach. We note that this
relation does not always have to hold. It holds here because our quasi-linear
utility function implies constant marginal utility from “all other consump-
tion”. Without that assumption, the market interest rate would match a
combination of time preference and decreasing (or increasing) marginal util-
ity over time as the representative agent’s consumption level changes.71

Equation (9.15) reduces equation (9.16) to

U ′(qt) = pt, (9.19)

the consumer’s “Euler equation”. Thanks to the major simplification from
finding (9.15), this “Euler equation” is just the “static” condition (9.12) that
price equals (or more generally is proportional to) marginal utility. Given
findings (9.18) and (9.19), the remainder of the comparison between the
market equilibrium and the social optimal runs as above.

71Given we did not explicitly model other goods in our social planner problem, we
would have to extend not only the consumer but also the social planner model to show
equivalence in a more comprehensive general equilibrium settings.
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9.3 Monopolistic resource extraction

Some nonrenewable resources are or have been concentrated in the hand of
a few countries that have exercised market power in the past. Maybe the
most famous price influencer is the Organization of the Petroleum Exporting
Countries (OPEC), founded in 1960 by Iran, Iraq, Kuwait, Saudi Arabia, and
Venezuela and today comprising 13 member states. It came to fame during
the oil embargo 1973-74 when the member states used their market power
to influence several countries supporting Israel by reducing or cutting their
oil supply. During the last decade, OPEC has lost some of its market power,
but the big players still tried to coordinate a reduction in oil supply during
the recent recessions. Closer to an actual monopoly these days is China’s
share in the extraction of rare earth minerals.72 We use the market form
of a monopoly rather than an oligopoly or a cartel merely to demonstrate
the role of market power in a simple setting. Analytic solutions for monop-
olistic extraction are harder to obtain than in the case of socially optimal
extraction. In the absence of a convincing analytic examples, we embrace a
general analysis. Thereby, we also generalize a famous finding stating that
the monopolist is the conservationist’s best friend.73

A monopolist does not take the price as given. We assume that the monopo-
list knows the consumer’s stationary (inverse) demand function p(q) and sets
the extraction rate to maximize profits. The monopolist’s optimal control
problem is

max

∫ T

0

(p(qt)− c(qt))qte
−rtdt s.t. Ṙ = −qt , R0 = R̄ , Rt ≥ 0 , T free.

We assume a free terminal horizon because we are particularly interested in
the question whether a monopolist will fully exhaust the resources earlier
or later than a social planner or a price-taking firm. In the present setting,
we assume that per unit costs are weakly increasing in extraction and that

72These rare earch minerals are, however, more abundant than the name suggests and
if the price increases sufficiently other reservoirs will be worthwhile tapping into.

73Conrad & Clark’s (1987) classic text book on resource economics and Hanley, Shogren
& White (2001) assume a linear demand. While they can solve solve the functional form
of the resource extraction, they cannot solve for the terminal extraction time that will be
of particular interest in our setting. Perman et. al. (2012) use the logarithmic demand
curve we encountered in the CARA utility case. They derive an analytic solution but only
by using a somewhat crude approximation.
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c′(qt) ≥ 0 is continuous. We also assume that the demand price is strictly
falling in extraction and that p′(qt) < 0 is continuous.

The (current value) Hamiltonian

Hc(qt, µt) = p(qt)qt − c(qt)qt − µtqt

delivers the first order conditions

∂Hc(qt, µt)

∂qt
= p′(qt)qt + p(qt)− c′(qt)qt − c(qt)− µt

!
= 0

⇒ p′(qt)qt + p(qt)− c′(qt)qt − c(qt) = µt (9.20)

∂Hc(qt, µt)

∂Rt

= 0
!
= rµt − µ̇t ⇒ µ̇t = rµt (9.21)

From equation (9.21) we obtain as usual

µ̇t = rµt ⇒ µt = µ0 exp(rt)

which we insert into equation (9.20) to find

pt = c′(qt)qt + c(qt) + µ0 exp(rt) + −p′(qt)qt︸ ︷︷ ︸
mark up (≥ 0)

. (9.22)

The underbraced expression −p′(qt)qt is positive because the demand price
falls with quantity. It is this mark up that distinguishes the dynamic equa-
tions of the monopoly from those of the competitive firm (compare equation
9.4). and the socially optimal extraction.

Can we use the mark up in equation (9.22) to claim that the resource price is
always higher under monopolistic extraction? No. First, the initial shadow
value of the resource might differ in the case of the monopoly. Second, in
case of a finite extraction time, it is unlikely that a price can always be higher
under monopolistic extraction. Assume that the competitive price was always
lower. Then consumers in the competitive market would consume more in
every period and the resource would run out earlier. Then, the price should at
least be higher in the competitive scenario when the resource is running out
in the competitive setting but still abundant under the monopoly. We will
return to the comparison between monopolistic and competitive extraction
in the next section.
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We now show that the monopolist’s extraction path is continuous and strictly
falling over time. The function

g(qt) ≡ p(qt)− c(qt) + p′(qt)qt − c′(qt)qt

is continuous by our assumption that p′(qt) and c
′(qt) are continous (implying

that their integrals p(qt) and c(qt) are continuous as well). Along the optimal
path, qt maximizes the Hamiltonian at every point in time. Therefore, the
second order condition for an optimum implies

∂2Hc(qt, µt)

∂q2t
= g′(qt)

!

≤ 0. (9.23)

Rearranging equation (9.22) we find that

g(qt) = µ0 exp(rt) ⇒ g′(qt)q̇t = µ0r exp(rt). (9.24)

Assuming µ0 ̸= 0,74 we therefore have g′(qt) ̸= 0 and

q̇t = µ0r
exp(rt)

g′(qt)
< 0.

Extraction falls strictly over time. Moreover, the function g(qt) is invertible
because g′(qt) < 0. By the left side of equation (9.24), we can write the
solution to the extraction problem as

qt = g−1
(
µ0 exp(rt)

)
,

establishing that the extraction path is continuous.

Finally, we analyze when the monopolist’s terminal condition assuming ex-
haustion of the resource in finite time. Then, the current value Hamiltonian
has to equal zero in the last period

Hc(qT , µT ) = pT (qT )qT − c(qT )qT − µT qT
!
= 0

⇒ pT (qT )qT − c(qT )qT = µT qT

⇒ pT (qT )− c(qT ) = µT or qT = 0.

74If µ0 was zero, then µt = 0 at all times and the resource would be of no (shadow-
) value in all period. Moreover, by equation (9.24) (l.h.s.) we had g(qt) = 0 for all t
and, in particular, g(qT ) = 0. But we already know that qT = 0 implying that g(0) =
p(0) − c(0) = 0 would have to hold (g(q) and p′(q) are continuous and, thus, finite on
any compact interval including 0). Even for the first marginal extraction unit the demand
value would not exceed the extraction costs, and extraction should not happen.
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and by inserting equation (9.20) for µT we find that either qT = 0 or qT ̸= 0
and

pT (qT )− c(qT )
!
= p′(qT )qT + p(qT )− c(qT )− c′(qT )qT

⇔ p′(qT ) = c′(qT ).

But we have assumed increasing average costs c′(q) ≥ 0 and falling demand
p′(q) < 0. As a result, the equality cannot be satisfied. We conclude that
resource use has to continuously approach qT = 0 if full exploitation happens
in finite time. Our reasoning corresponds directly to the one in the social
planner setting: given the monopolist’s objective function, equation (8.16)
cannot be satisfied and, thus, equation (8.15) has to hold. Here, profits
replace utility and are zero in the last period when qT = 0. Because qT = 0,
equation (9.20) implies that the last period shadow value is µT = p(0)−c(0).
Thus, the there will be no mark-up in the last period. Summarizing these
results from the terminal condition we know that for finite time exhaustion

qT = 0 and µT = p(0)− c(0), (9.25)

which coincide with the corresponding case for the competitive firm, i.e.,
where c′(q) ≥ 0 implies qT = 0.

9.4 Comparison of monopolistic extraction to compet-
itive and socially optimal extraction

We formalize the famous statement that the monopolist is the conservation-
ists best friend, showing that, if resources are extracted in finite time, the
monopolist will spread resource extraction over a longer time horizon. We
continue to assume increasing average costs c′(q) > 0. The basic idea is
simple, the monopolist charge a mark-up on the resource, and a higher price
reduces consumption. However, we already know that any change of the
Euler equation also changes the rent. As a result the comparison of the two
price and consumption paths is a bit more sophisticated. Our proof proceeds
in three steps. First, we combine the first order conditions and the transver-
sality condition to express the resource’s shadow value as a function of the
last period shadow value. This step is convenient because we found that
the choke price coincides across the monopolistic, the socially optimal, and
the competitive market setting. Second, we express the competitive firm’s
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shadow value as a function of the monopolist’s terminal time TM . These two
steps help us to make the two scenarios comparable by shifting price and ex-
traction paths to anchoring them with repect to terminal rather than initial
conditions, using the coinciding choke price as the common anchor point.
The top left panel of Figure 7 shows the price paths for the competitive firm
and the monopoly as they might look in calendar time, if our suspicion is
right that the monopoly charges a higher price and, as a result, the competive
setting exhausts the resource faster.75 The lower left panel shows how steps
one and two shift the competitive price path to the right in a way that both
exhaust the resource at the same point; the path of the competive firm is no
longer in calendar time but shifted. Once we have shifted the price paths
accordingly, we can show that the competitive price lies below the monop-
olist’s price because of the mark-up. Finally, using our finding that either
market form will use up all of the available resource, we show that it takes
longer along the monopolist’s extraction path to use up all of the resource.

Let C label “competitive”. Given our assumptions, we know that the com-
petitive setting decentralizes the social optimum. Let M label “monopo-
listic”, and let i ∈ {C,M}. In both the competitive market equilibrium
(equation 9.7) and the monopolistic setting (equation 9.25) we found that
µT i = p(0)− c(0). Therefore

µT ≡ p(0)− c(0) = µi
T i = µi

0 exp(rT
i)

⇒ µi
t = µT exp

(
r(t− T i)

)
,

where we emphasize that µT does not carry an index because it is the same
for both settings. We define δ = TM − TC as the difference in time to full
exhaustion between the monopolistic and the competitive setting. We shift
the competitive firm’s shadow value path by δ to enable comparability of the
extraction rates

µC
t = µT exp

(
r(t− TC)

)
= µT exp

(
r(t+ δ − TM)

)
⇒ µC

t−δ = µT exp
(
r(t− TM)

)
= µM

t .

75Note that the competitive price has to overtake the monopoly’s price at some point
in order to reach the choke price. While it is indeed charging more at this point in time,
this point in time corresponds to different reserves left in the ground. In the competitive
setting, the resource will be much closer to exhaustion than under the monopolistic setting
at the point where the two curves intersect.
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(a) prices in calendar time (b) resource rent in calendar time

(c) shifted price paths (d) shifted resource rent paths

Figure 7 The monopolist is the conservationist’s best friend: intuition for the proof.

Using aggregate cost C(qt), the price in the monopolistic setting is given by
equation (9.22) as

pt = C ′(qt) + µM
t + −p′(qt)qt︸ ︷︷ ︸

≡M(qt) ≥ 0

and in the competitive setting by equation (9.4) as

pt = µt + C ′(qt) ⇔ pt−δ = µt−δ + C ′(qt−δ).
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Together, these last three equations imply

p(qCt−δ)− C ′(qCt−δ) = µC
t−δ = µM

t = p(qMt )− C ′(qMt )−M(qMt )

⇒ p(qCt−δ)− C ′(qCt−δ) = p(qMt )− C ′(qMt )−M(qMt )

⇒ p(qCt−δ)− C ′(qCt−δ) ≤ p(qMt )− C ′(qMt )

⇒ qCt−δ ≥ qMt , (9.26)

where the last step uses that the function h(q) = p(q) − C ′(q) is strictly
decreasing because p′(q) < 0 and C ′′(q) > 0. The comparison states that, if
we were to shift the extraction paths in such a way that the terminal time
coincides, then extraction in the competitive setting would be higher. In
the final period both settings extract nothing and the inequality is weak.
However, in most periods the monopolist sets a positive mark up M(qt) > 0
and the inequality will be strict. We can now compare the aggregate resource
use in the two settings over suitable parts of the time horizon∫ TM

0

qMt dt = R0 =

∫ TC

0

qCt dt =

∫ TC+δ

δ

qCt−δ dt =

∫ TM

δ

qCt−δ dt >

∫ TM

δ

qMt dt.

The first two equalities use the terminal conditions (9.7) and (9.25), the third
equality is a change in the integration variable, the fourth equality follows
by definition of δ, and the inequality follows from equation (9.26), realizing
that the inequality will be strict during some time intervals. Comparing the
first integral to the last integral, qt ≥ 0 implies δ > 0 and, thus, TM > TC .
If extraction happens in finite time, the monopolist will extract more slowly.

9.5 Stock-dependent extraction costs and exogenous
technological progress

Our earlier settings ignored two important features of contemporaneous re-
source extraction. First, the costs of extraction can depend on the amount of
the resource left in the ground. Second, we have been experiencing massive
technological progress over the past decades, reducing extraction costs. Gen-
eralizing the competitive setting, we assume that a representative firm faces
the extraction costs C(qt, Rt, t). For now we assume Cqt(qt, Rt, t) ≡ ∂C

∂qt
> 0

and CRt(qt, Rt, t) ≡ ∂C
∂Rt

< 0. We will add further structure to this cost
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function as we move along. The firm’s optimal control problem is

max

∫ T

0

(
ptqt − C(qt, Rt, t)

)
e−rtdt s.t. Ṙ = −qt , R0 = R̄ , Rt ≥ 0.

The current value Hamiltonian is

Hc(qt, µt) = ptqt − C(qt, Rt, t)− µtqt

and the first order conditions are

∂Hc(qt, µt)

∂qt
= pt − Cqt − µt

!
= 0 ⇒ µt = pt − Cqt

µ̇t =
d
dt
(pt − Cqt)

∂Hc(qt, µt)

∂Rt

= −CRt

!
= rµt − µ̇t ⇒ µ̇t = CRt + rµt.

Combining the two first order conditions into the Euler equation we find

d
dt
(pt − Cqt) = CRt + r(pt − Cqt)

⇒
d
dt
(pt − Cqt)

pt − Cqt

= r − −CRt

pt − Cqt︸ ︷︷ ︸
+

. (9.27)

The left side of equation (9.27) represents the familiar growth rate of the
resource rent pt−Cqt . The right side shows that, if extraction costs depend on
the amount of the resource left in the ground, this resource rent no longer has
to grow at the rate of interest. The interest rate represents an opportunity
cost. By leaving a unit of the resource in the ground today, we forgo the
interest rate r that we could earn by extracting today and depositing the
profits on a bank account. However, under stock dependent extraction costs,
we also have a direct benefit from leaving a unit of the resource in the ground.
If we extract a unit less today, then extraction will be a little cheaper all along
the future extraction path. This payoff from leaving the resource in the
ground is subtracted from the opportunity cost (or the benefit of immediate
extraction). As a result, the resource rent only has to grow at the rate of
interest less the extraction cost savings that result from leaving a marginal
unit in the ground (relative to marginal net revenue).
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Next, we analyze the left side of equation (9.27) more closely. The numerator
reads

d

dt

(
pt − Cqt(qt, Rt, t)

)
= ṗt −

∂Cqt

∂t
− ∂Cqt

∂qt
q̇t −

∂Cqt

∂Rt

Ṙt

First, the change of the resource rent from one period to the next is de-
termined by the difference between the price change pt and the direct time
change of the marginal extraction cost

∂Cqt

∂t
resulting from potential tech-

nological progress. Technological progress would reduce extraction costs,
thereby increasing the rent over time and reducing the price increase required
to hold on to the resource. Second, if resource use falls over time, this flow re-
duction further reduces the flow dependent extraction costs (

∂Cqt

∂qt
= ∂2C

∂q2t
> 0

and q̇t < 0) reducing the required price increase. Finally, if marginal ex-
traction costs increase with the depletion of resources, then the last term
is positive and increases the required price increase (

∂Cqt

∂Rt
= ∂2C

∂qt∂Rt
< 0 and

Ṙt < 0). This last contribution works into the opposite direction of the
other terms, including the stock-dependent cost term on the right side of
equation (9.27). As we deplete the resource, marginal extraction costs in the
future will increase, partially offseting the reduction of extraction costs over
time represented by the earlier terms.76

We illustrate these effects in an example where the cost function takes the
form

C(qt, Rt, t) = Q(qt) Rq(Rt) T q(t) +RR(Rt) T R(t).

The left summand controls marginal extraction costs and we assumeQ′(qt) >
0,Q′′(qt) ≥ 0. We permit for the possibility that marginal extraction costs in-
crease as we deplete the available stock of the resource, assuming Rq ′(Rt) ≥
0. Moreover, we permit for exogenous technological progress that reduces
marginal extraction costs, assuming T q ′(t) ≤ 0. The second summand con-
trols “per period fix costs” of extraction that are independent of the resource
flow but depend on the remaining stock of the resource, RR′

(Rt) ≤ 0. E.g.,
as we deplete reservoirs close to the surface, we have to drill deeper. Some of

76We emphasize the difference between this intuition and the mechanism underlying the
right side of equation (9.27). The latter characterizes a benefit from leaving a unit of the
resource in the ground. The present effect takes the decline of the resource stock as given
(Ṙ < 0) and reflects that, consequently, marginal extraction costs will rise (or fall less).
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these additional costs for opening up the resource will be independent of the
extraction flow. Again, we permit for exogenous technological progress that
reduces these costs over time, T R′

(t) ≤ 0. We abbreviate relative changes of
these cost factors as follows

Q̂(qt) =
Q′′(qt)

Q′(qt)
R̂

q
(Rt) = −Rq ′(Rt)

Rq(Rt)
T̂

q
(t) = −T q ′(t)

T q(t)

all of which are defined to be positive. Then the Euler equation (9.27) takes
the form

ṗt = Cqt

[
Q̂(qt)q̇t︸ ︷︷ ︸

−

−T̂
q
(t)︸ ︷︷ ︸

−

−R̂
q
(Rt)Ṙt︸ ︷︷ ︸
+

]
+ r (pt − Cqt) + CRt︸︷︷︸

−

, (9.28)

where the first sign assumes q̇t < 0. We recall the Euler equation (9.3) for
constant marginal extraction costs

ṗt = r(pt − c).

With constant marginal extraction costs, the price increase has to equal the
interest on the rent. The generalization in equation (9.28) still contains this
base for the price change. A reduction in marginal extraction costs over
time due to a falling extraction rate

(
Q̂(qt)q̇t

)
and exogenous technological

progress
(
-T̂

q
(t)
)
reduce this price increase. Depletion of the resource tends

to increase the marginal extraction costs as it becomes harder to access the
resource. Partially offsetting the decrease in marginal costs, it increases the
price increase required to make the firm willing to hold on to the resource(
-R̂

q
(qt)Ṙt

)
. Finally, leaving a unit of resource in the ground makes future

extraction cheaper (CRt < 0), increasing the benefit from extracing tomorrow
rather than today and reducing the necessary price increase.

Further specifying the above example, let us assume that all functions are ex-
ponentials, i.e.,Q(qt) = A exp(aqt), Rq(Rt) = exp(−bRt), T q(t) = exp(−δqt),
RR(Rt) = D exp(−dRt), T R(t) = exp(−δRt), which satisfy our assumptions
on functional form (given all parameters are positive). Then equation (9.28)
becomes

ṗt − rpt = Cqt

[
aq̇t − bṘt − (δq + r)

]
+ CRt (9.29)

with Cqt = a A exp(aqt − bRt − δqt)

and CRt = −b A exp(aqt − bRt − δqt)− d D exp(−dRt − δRt)
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The interpretation remains the same as for equation (9.28). Yet, equa-
tion (9.29) makes it easier to get an impression of short versus long-term
dynamics. Exogenous technological progress, by reducing marginal extrac-
tion costs at rate δq, can reduce the price increase and even turn it nega-
tive (e.g. shale gas boom). However, as technological progress reduces the
marginal extraction costs, it also degrades the very base Cqt by which it re-
duces the price increase. By contrast, as long as the price remains positive,
the interest rate continues to push the price up also in the long run (the term
rpt on the left). Similarly, the stock dependence of the resource will initially
reduce the price increase. However, this effect falls over time. In particular,
the technological progress governing marginal extraction costs that reduces
the price increase in the first channel, also reduces the benefit of leaving a
resource in the ground; it thereby diminishes the CRt−channel’s ability to
reduce the price increase. Technological progress governing stock-dependent
(per period) fix-costs of opening up a new reservoir only reduces the benefit of
leaving more of the resource in the ground and unambiguously speeds up the
price increase. In our example, technological progress eventually drives the
right side of equation (9.29) to zero, implying that the left side approaches
an exponential price increase in the long run. In summary, in the short-run
there can be several forces at work that reduce the price increase of a scarce
nonrenewable resource. In the long run, we expect an exponential price in-
crease at the rate of interest – at least if resource use stretches sufficiently
long.

We note that the present discussion focuses on the qualitative price path.
These changes in the price path affect extraction over time and, thus, the
initial price and extraction levels. We conjecture that a dampening of the
initial price increase discussed above will tend to reduce the initial extraction
rate, resembling a reduction of the interest rate in our quantitative examples
of Section 8.

9.6 Taxes: Profits versus Revenue

Nonrenewable resources carry a rent and these rents present a convenient
way to generate government revenue. We show that taxing profits transfers
income from the resource extracting firm to the government without undo-
ing Section 9.2’s finding that the competitive market equilibrium is Pareto
optimal. In contrast, taxing the firm’s revenue would distort the extraction
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and the market would fail to replicate the social planner’s solution. We note
that most nonrenewable resources are privately or state-owned and extracted
under well-defined property rights. Thus, in contrast to other chapters, this
section does not consider taxation as a means to “repair” the market, but
merely as an instrument to generate government income.77

Profit Tax. We consider the firm’s optimization problem from Section 9.1

max

∫ T

0

(1− τ)(ptqt − C(qt))e
−rtdt s.t. Ṙ = −qt, R0 = R̄, Rt ≥ 0, T free

adding a profit tax, i.e., a tax τ proportional to the firm’s net revenue ptqt−
C(qt). To check whether the tax distorts the resource extraction path we
derive the Euler equation

d
dt
(1− τ)(pt − C ′(qt))

(1− τ)(pt − C ′(qt))
= r ⇒

d
dt
(pt − C ′(qt))

(pt − C ′(qt))
= r.

We observe that the tax cancels out and the Euler equation coincides with
equation (9.5) in the absence of a profit tax, which we have shown to coincide
with the social planner solution. Moreover, the tax does not affect the the
resource’s equation of motion or the terminal and transversality condition.
The only impact the tax could have is on the second order condition if it was
to exceed 100%. Then the firm would stop extraction. For a tax τ ∈ (0, 1),
we find that the tax has no impact on the extraction path and, therefore,
does not distort the socially optimal extraction path. An even simpler way
to realize that the tax does not affect the socially optimal extraction path is
by realizing that a multiplicative constant can be pulled out of the integral
and does not change the maximization problem.78

Revenue Tax. Now we assume that the regulator taxes the firm’s revenue
at a constant rate τ . The firm’s optimization problem becomes

max

∫ ∞

0

[(1− τ)ptqt − C(qt)]e
−rtdt s.t. Ṙ = −qt , R0 = R̄ , Rt ≥ 0 , T free.

77Unfortunately, the extraction of nonrenewable resources sometimes cause environmen-
tal degradation. These externalities are not always internalized together with the property
right governing the resources themselves. In these situations we could consider a Pigo-
vian tax in addition to the taxation discussed below, preferable of course a tax directly
addressing the externality.

78While this is true for a multiplicative constant, we note (yet again) that we have to be
more careful with an additive constant because an additive constant changes the objective
by multiplying the endogenous length of the time horizon.
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The current value Hamiltonian is

Hc(qt, µt) = (1− τ)ptqt − C(qt)− µtqt,

and we obtain the necessary conditions for an optimum

∂Hc(qt, µt)

∂qt
= (1− τ)pt − C ′(qt)− µt

!
= 0 ⇒ µt = (1− τ)pt − C ′(qt)

∂Hc(qt, µt)

∂Rt

= 0
!
= rµt − µ̇t ⇒ µ̇t = rµt.

that give rise to the Euler equation

d
dt
[(1− τ)pt − C ′(qt)]

(1− τ)pt − C ′(qt)
= r ⇔

d
dt

[
pt − C′(qt)

(1−τ)

]
pt − C′(qt)

(1−τ)

= r,

which differs from our earlier Euler equation that characterizes the social
optimum. The right version of the equation points out that a revenue tax has
the same impact on the extraction path as an increase in marginal extraction
costs. Unless extraction costs are zero, a revenue tax distorts the market
equilibrium. We note that, once again, we could have obtained this insight
more quickly by pulling the factore (1− τ) out of the integral to obtain the
equivalent optimization problem

max

∫ ∞

0

[
ptqt −

C(qt)

1− τ

]
e−rtdt s.t. Ṙ = −qt , R0 = R̄ , Rt ≥ 0 , T free.

We close by noting that the effective increase in marginal extraction costs can
also imply that some of the resource will be left in the ground even though
extraction would be socially beneficial.
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10 Non-Convex Control Problems

This section is an introduction to non-convex control problems. These prob-
lems feature a non-concave Hamiltonian so that the necessary conditions
don’t generally identify a unique optimal trajectory. In general, we can ob-
serve multiple steady states and have to analyze various trajectories leading
into different steady states. For our discussion, we pick the problem of opti-
mally controlling phosphor inflow into shallow lakes. The dynamics of these
lakes exhibits a sort of memory effect that is called hysteresis. For the op-
timally controlled system we find two saddle point stable steady states that
can be identified with the lake being in an oligotrophic (clear) or a eutrophic
(turbid) state. We show the existence of a so called Skiba point. For levels of
the phosphor stock below this point it is optimal to pick a trajectory leading
into the clean steady state, while for levels above it is optimal to settle with
or move into a eutrophic state. The section builds on three papers published
in a special issue of the Journal Environmental and Resource Economics (vol
26) on the economics non-convex ecosystems. The articles are Dasgupta &
Mäler (2003), Brock & Starrett (2003), and Mäler, Xepapadeas & de Zeeuw
(2003).

10.1 ‘Convex’ Control Problems

Before we discuss a non-convex control problem, we briefly review what con-
stitutes a convex problem. Let us recall the typical layout of the continuous
time optimal control problem that we attacked with by means of the maxi-
mum principle.

max

∞∫
0

u(c, x)e−ρt dt (10.1)

subject to ẋ = f(c, x), x(0) = x0

yielding the current value Hamiltonian

H(c, x, λ) = u(c, x) + λf(c, x)
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and the necessary conditions for an optimum

∂H

ct
= 0,

∂H

xt
= ρλt − λ̇t,

∂H

λt
= ẋt,

and the transversality condition lim
t→∞

e−ρtH(c, x, λ) = 0

and under stronger conditions lim
t→∞

e−ρtλt = 0 .

Paths (c∗t , x
∗
t )t∈[0,∞) satisfying these conditions are candidates for an opti-

mum. In a convex problem we have in addition sufficiency conditions (Man-
gasarian/Arrow) that state something like:

Let λ ≥ 0 and and H(c, x, λ) be concave in (c, x) for all λ. Then
the candidate(s) (c∗t , x

∗
t )t∈[0,∞) are globally optimal paths. Moreover, if

H(c, x, λ) is strictly concave in (c, x) for all λ, then (c∗t , x
∗
t )t∈[0,∞) is a

unique optimal path.

Here we are slightly lax about the transversality conditions required in ad-
dition for sufficiency. Note that H(c, x, λ) concave for λ ≥ 0 is equivalent to
u(c, x) and f(c, x) being concave in (c, x). Why is such a control problem is
generally referred to as “convex”? Here are our two explanations

1. Historically people were analyzing min-problems rather than max prob-
lems, so that problem (10.1) turns into

min

∫ ∞

0

−u(c, x)e−ρt dt

with −u convex rather than concave.

2. For a typical “capital stock investment (ẋ) versus consumption (c)”
model with free disposal (‘≤’) where the constraint of motion is

ẋ ≤ F (x)− c

we find that F (x) concave implies that the set of feasible programs
{(ct, xt)t∈[0,∞) s.th. ẋ ≤ F (x)− c} is convex:
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Let (c◦t , x
◦
t )t∈[0,∞) and (c⋄t , x

⋄
t )t∈[0,∞) be two feasible programs. Then

(c̃t, x̃t)t∈[0,∞) with

c̃t = γ c◦t + (1− γ) c⋄t

x̃t = γ x◦t + (1− γ)x⋄t

is feasible as well for all λ ∈ [0, 1].
Proof: By feasibility of {c◦t , x◦t}t∈[0,∞) and {c⋄t , x⋄t}t∈[0,∞) we have

γ ẋ◦t ≤ γ F (x◦t )− γ c◦t

(1− γ) ẋ⋄t ≤ (1− γ)F (x⋄t )− (1− γ) c⋄t

and adding these up we find

˙̃xt = γ ẋ◦t + (1− γ) ẋ⋄t

≤ γ F (x◦t ) + (1− γ)F (x⋄t )− (γ c◦t + (1− γ) c⋄t )

≤ F (γ x◦t + (1− γ)x⋄t )− (γc◦t + (1− γ) c⋄t )

≤ F (x̃t)− c̃t .

The second inequality is due to concavity of F (x). Thus (c̃t, x̃t)t∈[0,∞)

is feasible.

10.2 The Shallow Lake Problem

Shallow lakes are sensitive to phosphorus inflow (loading) caused by fertilizer
use in the agricultural sector. For low amounts of phosphorous the ecology
of the shallow lake gives a positive feedback to an increase in phosphorous
loading.79 An increase in the phosphorous stock triggers the growth of algae
and can cause a loss of oxygen in the water. The water becomes turbid and
the ecosystem changes (to the distress of trouts, fishermen, and swimmers).
Such a state is called eutrophic. A state of the lake with clear water is re-
ferred to as oligotrophic. In small ponds the change from an oligotrophic

79Another way to think about it is that for low stocks and low flows of phosphorous
some mechanisms in the lake hold back part of the phosphorous from going into the water
and producing algae. This ‘holding back effect’ decreases as the stock increases (while the
natural purification rate increases as the stock of phosphorous increases).
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state to a euthrophic state can happen within a day, in lakes within weeks.
The following analysis will explain the underlying dynamics.
We denote the stock of phosphorous (suspended in algae) in the lake by x(t).
The loading c(t) denotes the amount of phosphorous flowing into the lake
from the watershed, stemming from agricultural production. The (self-) pu-
rification rate of the lake is α. In addition, we have a function f(x) capturing
the feedback. It increases stronger for small phosphorous stocks than for large
phosphorous stocks and is convex-concave. We assume limt→∞ f ′(x) = 0. An
example that we will use for numeric analysis is: f(x) = x2

1+x2 . The lake dy-
namics are governed by the equation of motion

ẋt = ct − αxt + f(xt) ≡ X(ct, xt) . (10.2)

Thus, a lake with a constant loading c is in equilibrium if

ẋt = 0

⇔ αxt − ct = f(xt) (10.3)

⇔ ct = αxt − f(xt) ≡ h(x) . (10.4)

Figure 8 depicts the two sides of equation (10.3) for different constant load-
ings c. Without any phosphorous inflow from the watershed we have a unique
equilibrium at a zero phosphorous stock. With a small inflow (dashed line)
we find three equilibria and history determines which one the lake is in. Note
that you can read off the phosphorous loading as the absolute of the inter-
section with the y-axis. Assume we start with a zero phosphorous stock and
slowly load the lake. we increase the loading slowly so that we move in or
close to the equilibrium. Then, the equilibrium stock moves up the f(x)
curve as we increase this almost constant slowly increasing loading until we
reach x1. If we further increase the loading, the equilibrium with the low
phosphorous stock disappears. The dotted line representing net loading now
lies underneath the f(x) line. By equation (10.2) we know

αxt − c < f(x2) ⇒ ẋt > 0 .

Thus, the lake will move all the way to x. This move in Figure 8 corresponds
to the move from a clear to a turbid lake or from an oligotrophic to a eutrophic
state. Note that not only a small difference in the loading can cause a huge
difference in the equilibrium phosphorous stock, but also a decrease of the
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Figure 8 : Shallow lake model. Feedback f(x) curve and ‘net purification’ αx − c curve
for c = 0 (straight line), c = .05 (dashed line) and c = .1 (dotted line). The purification
parameter determines the slope of the line, here it is α = .52. The feedback function is

f = x2

1+x2 .

loading does not immediately take us back to x1. If we start reducing the
loading we slowly move down the f(x) curve until we reach x2. This point
corresponds to a significantly lower loading than the one corresponding to
x1, but still to a higher phosphorous stock. Only if we decrease the loading
further we move back to the lower part of the f(x) curve (αxt− c > f(x2) ⇒
ẋt < 0) and reach a new equilibrium at x. This effect is called hysteresis.

The scenario described above is the one that we would like to analyze in more
detail and from an economic perspective. However, we point out that two
other qualitatively different scenarios are possible if the purification rate of
the lake is higher respectively lower than in the above scenario. With a high
enough purification rate α we would ultimately reach the scenario depicted
in Figure 9.a) where we are back to always finding a unique steady state and
a continuous adjustment of the equilibrium phosphorous stock to changes in
the loading. On the other hand, if the purification rate is sufficiently small
we end up with the scenario depicted in Figure 9.b). Here, even a reduction
of the loading to zero cannot get us out of a eutrophic state. A move from
the lower branch of f(x) to the upper branch is irreversible.

Heading for the economic analysis let us translate Figure 8 into a diagram
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9.a) Unique Oligotrophic Equilibrium
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9.b) Lake with Irreversible Eutrophication

Figure 9 : Shallow lake model. Feedback f(x) curve and ‘net purification’ αx − c curve.
If the purification rate is high enough the lake will always have a unique equilibrium
(here α = .65). If the purification rate is small enough the lake will not be able to pass
back from the euthrophic state to the oligotrophic state even if phosphor inflow seizes

completely (here α = .4). The feedback function f = x2

1+x2 is the same as in Figure 8.

that corresponds to equation (10.4) and depicts the difference between the
purification and the feedback of the lake (i.e. the difference between the solid
straight line and the f(x) curve in Figure 8). In Figure 10 we find for any
constant loading c the corresponding equilibria of the lake on a horizontal
line through c. By adding the off-equilibrium phosphorous stock dynamics
to Figure 10, we can also observe that the first and the third equilibrium
are stable while the intermediate equilibrium is unstable. For this purpose
we take the derivative of the equation of motion for xt, defined in equation
(10.2) as X(ct, xt), with respect to the loading ct and find

∂X(ct, xt)

∂ct
= 1 .

Given, the change of the stock is zero on the line, we know that the stock
is increasing above the curve and decreasing below. In Figure 11 we plot
the corresponding vector field of X(c, x) where the length of the arrows is
proportional to the magnitude of ẋ at the corresponding point. We can
observe how the off-equilibrium dynamics drive us from x1 over to the high
phosphorous stock equilibrium on the right branch of the curve if we increase
c a little bit more.
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Figure 10 : Shallow lake model. Net purification (after feedback). Same specifications as
in Figure 8.

10.3 Optimal Control of the Shallow Lake

So far we were only contemplating how the lake reacts to different loadings.
Now we will analyze how to obtain the optimal loading. We face a trade-off
between the recreational value of a clear lake and its use value as a ‘dumping
site’ for phosphorous which is implied by the use of fertilizer in the agricul-
tural sector. We will assume the following specification of welfare

W =

∫ ∞

0

(ln c− βx2)e−ρtdt .

Here β is a scaling parameter for the (quadratic) appreciation of a clear
lake and ρ is the rate of pure time preference. The logarithmic specification
of the use value of the lake as a dumping site for fertilizer implies that a
social planner will never choose a zero loading, e.g. because the complete
abandonment of fertilizer could cause a food shortage that outweighs any
other concern. OptimizingW with respect to the constraint given in equation
(10.2) and some initial stock x0 we find

H(c, x, λ) = ln c− βx2 + λ(c− αx+ f(x))
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Figure 11 : The magnitude and direction of the arrows indicates the change of the phos-
phorous stock ẋ. Same specifications as in figures 8 and 10.

and

∂H

ct
=

1

c
+ λ

!
= 0 ⇒ λ = −1

c
⇒ λ̇ =

ċ

c2

∂H

xt
= −2βx+ λ (−α + f ′(x))

!
= ρλt − λ̇t

⇒ −2βx+
α

c
− f ′(x)

c
= −ρ

c
− ċ

c2

⇒ ċ = 2βxc2 − (α + ρ− f ′(x)) c ≡ C(c, x) . (10.5)

Thus, stationarity of the optimal loading holds for ċ = 0 which is equivalent
to

c = 0 or c =
α + ρ− f ′(x)

2βx
≡ g(x)

⇒ α + ρ− f ′(x) = 2βxc if c > 0 . (10.6)

Figure 12 adds the ċ = 0 curve into the lake model of Figure 10. While Figure
12 depicts the scenario that we would like to analyze, some qualitatively
different figures can result as well. If we increase the discount rate sufficiently,
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Figure 12 : ẋ = 0 and ċ = 0 curves for the shallow lake model. Here the purification
parameter α = .52 is chosen to yield a reversible lake dynamics with hysteresis. The

feedback function is f = x2

1+x2 . The other parameters are chosen as β = 1 characterizing
the appreciation of the clear lake and a discount rate of ρ = 3%. These specifications
result in three intersections of the depicted curves.

we end up with a unique intersection in the eutrophic region (Figure 13.a).
On the other hand, if we increase the appreciation of the clear lake expressed
by the parameter β, we end up with a unique equilibrium in the oligotrophic
region (Figure 13.b). In order to analyze the dynamics off the steady state
equilibria we analyze how the change in loading C(c, x) defined in equation
(10.5) depends on the loading and find

∂C(ct, xt)

∂ct

∣∣∣∣
ċ=0

= − (α + ρ− f ′(x)) + 4βxc = 2βxc > 0

where we used equation (10.6) assuming c > 0. Thus, the optimal loading in-
creases above the ċ = 0-line and decreases below of it. With that information
we can draw the phase diagrams in figures 14 and 15.
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13.a) Unique Eutrophic Equilibrium
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13.b) Unique Oligotrophic Equilibrium

Figure 13: Alternative ċ = 0 curves yielding unique steady states. Figure 13.a) is obtained
by increasing the discount rate to ρ = 20%. Figure 13.b) is obtained by increasing the
appreciation of the clear lake to β = 3. The other parameter are the same as in Figure 12
(α = .52, ρ = 3% and β = 1 respectively ρ = 3%).

10.4 A Close Up of the Steady States

Linearizing the dynamic system characterized by equations (10.2) and (10.5)

ẋ = c− αx+ f(x)

ċ = 2βxc2 − (α + ρ− f ′(x)) c

in the steady states results in

ẋ = (f ′(x)− α) dx + dc

ċ = (cf ′′(x) + 2βc2) dx + (4cxβ − (α + ρ) + f ′(x)) dc

⇔
(
ẋ
ċ

)
=

(
f ′(x)− α

cf ′′(x) + 2βc2
1

4cxβ − (α + ρ) + f ′(x)

) (
dx
dc

)
(10.7)

⇔
(
ẋ
ċ

)
=

(
f ′(x)− α

cf ′′(x) + 2βc2
1

2cxβ

) (
dx
dc

)
︸ ︷︷ ︸

≡J

where we used equation (10.6) which will be used in the next line again.
Then

tr(J) = f ′(x)− α + 2cxβ = ρ
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Figure 14 : Same as Figure 12 with off-equilibrium dynamics added. The magnitude
and direction of the arrows correspond to the according change in phosphorous stock and
loading. Parameters are α = .52, β = 1 and ρ = 3%.

and, like always, the equilibrium can be at most saddle point stable (at least
one Eigenvalue has to be positive). The determinant of J is unfortunately a
little harder to sign

det(J) = c [(f ′(x)− α)2xβ − (f ′′(x) + 2βc)] .

In order to sign the determinant a worthwhile try is comparing the above
expression to the ratio of the slopes of h and g in the steady state. Obviously,
which of the curves is steeper alternates over the three steady states (which
we suspect to alternate in stability). Moreover, which of the two curves cuts
from above respectively below determines the pattern of the arrows in the
phase diagram around the steady state. The derivatives are (using equation
10.6)

g′(x) = −xf
′′(x) + α + ρ− f ′(x)

2βx2
= −f

′′(x) + 2βc

2βx

h′(x) = α− f ′(x)
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15.a) Unique Eutrophic
Equilibrium
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15.b) Unique Oligotrophic
Equilibrium

Figure 15 : Same as Figure 13 with off-equilibrium dynamics added. The magnitude
and direction of the arrows correspond to the according change in phosphorous stock and
loading. Figure 13.a) is obtained by increasing the discount rate to ρ = 20%. Figure 13.b)
is obtained by increasing the appreciation of the clear lake to β = 3. The other parameter
are the same as in Figure 14 (α = .52, ρ = 3% and β = 1 respectively ρ = 3%).

implying that

g′(x) > h′(x)

⇔ −f ′′(x)− 2βc > 2βx(α− f ′(x))

⇔ det(J)

c
> 0

Hence Det(J) is negative for x∗ and x∗∗∗ and positive for the steady state
x∗∗ in between. In consequence x∗ and x∗∗∗ are saddle point stable as both
Eigenvalues

λ1,2 =
tr(J)

2
±

√(
tr(J)

2

)2

− det(J)

are real and λ1 is positive while λ2 is negative. For x∗∗ the Eigenvalues are
either both real and positive if tr(J)2 ≥ 4 det(J), or both complex otherwise.
In the first case we have an unstable node, in the second we have an unstable

spiral (the real part of the two complex Eigenvalues tr(J)
2

= ρ
2
is positive).
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In the shallow lake example the condition tr(J)2 ≥ 4 det(J) translates into

ρ2 ≥ c (−2cβ + 6xβ(2cxβ + ρ)− f ′′(x))

⇔ ρ2 ≥ c [(f ′(x)− α)2xβ − (f ′′(x) + 2βc)] .

Numerical calculations for the f(x) = x2

1+x2 example show that both cases can
occur. In the example plotted in figures 12 and 14 where α = 0.52, β = 1,
and ρ = .03 we find that the Eigenvalues corresponding to x∗ at coordinates
(x, c) = (0.30, 0.07) are λ∗1 = 0.32 and λ∗2 = −0.29 with the respective Eigen-
vectors (−0.95,−0.32) tangent to the unstable manifold and (−0.96, 0.27)
tangent to the stable manifold. For x∗∗ at coordinates (x, c) = (0.98, 0.02)
we find the complex Eigenvalues λ∗∗1 = (0.02 + 0.09i and λ∗∗2 = 0.02 − 0.09i
with the respective complex Eigenvectors (1, 0.02+0.09i) and (1, 0.02−0.09i).
Thus, as we might guess from the phase diagram in Figure 14 we have an
unstable spiral at x∗∗. Finally at x∗∗∗ with coordinates (x, c) = (1.5, 0.09) we
find our second saddle point stable equilibrium with Eigenvalues λ∗∗1 = 0.24
and λ∗∗2 = −0.21 and corresponding Eigenvectors (−0.90,−0.43) tangent to
the unstable manifold and (−1,−0.03) tangent to the stable manifold. Figure
16 depicts a close up of the three equilibria that we analyzed above.

Figure 17 gives an example where x∗∗ is an unstable node rather than an
unstable spiral. The corresponding parameter values are β = 5 and ρ = 30
(which might well be considered non-economic). From the diagram 16.b) it
is not immediately clear whether or not the trajectories spiral out. However,
calculating the corresponding Eigenvalues yields λ∗∗1 = 0.18 and λ∗∗1 = 0.12
with corresponding Eigenvectors (−0.995,−0.097) and (−0.999,−0.032).

So far we have omitted one steady state. Recall that ċ = 0 also had the
solution c = 0. Thus, (0, 0) is a fourth steady state. Evaluating the matrix
J for x = 0 and c = 0 yields

J =

(
f ′(0)− α

0
1

f ′(0)− (α + ρ)

)
.

Note that we have to take the first form of J in equation (10.7) because in
equation (10.7) we used equation (10.6) which is only true for the c > 0
branch of ċ = 0. We know that (for the case we are analyzing) α > f ′(0)
so that the trace is negative and the determinant is positive. Hence (0, 0)
is a stable equilibrium. Precisely, the Eigenvalues can be read right off the
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16.a) First Steady State
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16.c) Third Steady State

Figure 16 : Close-up on the steady states in Figure 14. While the first and the third are
saddle points, the second is unstable and spirals out. Note that the c-scale is ten times
magnified with respect to the x-scale.

matrix J as λ1 = f ′(0)−α and λ2 = f ′(0)− (α+ ρ). However, as we will see
in the next section this steady state is not optimal.

10.5 The Optimal Consumption Paths

In a convex setting with a strictly concave Hamiltonian we know that any
candidate that satisfies the necessary conditions is the unique global optimum
of our control problem. In particular, if we have a path that converges into a
steady state that satisfies the necessary conditions we can discard the other
trajectories. However, in a non-convex setting uniqueness can no longer be
taken for granted. Thus, we have to figure out which of the candidate paths
leading to which of the steady states is (among the) best. In addition, we
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17.a) Phase Diagram
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17.b) Unstable Steady State

Figure 17 : Example for a scenario where the unstable steady state x∗∗ is an unstable
node rather than a spiral. The corresponding parameters are α = .52 as before, but a
significant increase of β = 5 and ρ = 30.

would have to show that the diverging trajectories are not better than those
converging into a steady state. We will only give the following economic
intuition. We can observe from the phase diagram that all the paths not
converging into a steady state approach (∞,∞). As the stock of phosphorous
and the loading go to infinity, the quadratic loss from the increase in the stock
will outgrow the logarithmic gains from loading the lake. Thus, unlimited
dumping will not be optimal with the given benefit functions.80 The economic
intuition that paths converging to the stable steady state (0, 0) cannot be
optimal is straight forward. With a logarithmic utility from loading the lake
it cannot be optimal for the social planner to reduce c to zero. Formally we
can either show that the transversality condition is violated, or that utility
along paths converging into the origin always yield lower welfare than paths
converging into a steady state. First, let us assume that the transversality
condition limt→∞ e−ρtλt = 0 is a necessary condition for our problem. It is
easily observed that the Eigenvector to λ1 = f ′(0)−α is (1, 0) implying that
along this stable manifold the costate λ = −1

c
is negative infinity all the way

and does not converge. For other trajectories, the loading c falls with the
speed determined by the second Eigenvalue which, thus, is proportional to

80This is only an intuition. The argument is not rigorous in neither considering the
ratio of convergence speeds of c and x nor discounting. For a formal analysis in a similar
setting see Wagener (2003).
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e−(ρ+(α−f ′(0))t. Therefore

lim
t→∞

e−ρtλ(t) ∝ − lim
t→∞

e−ρt

e−ρ−(α−f ′(0)) t
= − lim

t→∞
e(α−f ′(0)) = −∞

and the necessary condition for an optimum is not satisfied.

Another way to show that trajectories converging to (0, 0) cannot be optimal
follows more directly the intuition that the logarithmic utility for loading
the lake should not go to negative infinity for an optimal path. Instead
of using the transversality condition to show that the paths converging to
(0, 0) are not satisfying the necessary conditions for an optimum, we simply
show that the trajectory following the stable manifold leading into x∗ always
yields higher welfare. First, using the same argument as above, eliminate the
trajectories starting with (and keeping) a zero loading because they yield neg-
atively infinite utility at every point of time. Then, on any other trajectory
in Figure 15 converging to the origin, let c̄ be an arbitrarily small value of
the loading that the trajectory takes on at some point of time t0. Obviously,
we can choose c̄ arbitrarily close to zero (by picking t0 accordingly high).
Without loss of generality set t0 = 0. We denote the remaining part of the
trajectory following the dynamic system 10.2 and 10.5 by (xo(t), co(t))t∈(0,∞)

leading from c̄ and the stock at t0 into the origin. Then the welfare along
this path has the following upper bound∫ ∞

0

[
ln co(t)− βxo(t)2

]
e−ρtdt ≤

∫ ∞

0

ln c̄ e−ρtdt =
ln c̄

ρ
. (10.8)

Now we compare the welfare along this path with the welfare obtained from
choosing the loading at t0 in a way that brings us onto the stable manifold
leading into the steady state (x∗, c∗). Let us denote the according path
by (xs(t), cs(t))t∈(0,∞). Along the trajectory we know that xs(t) < x∗ and
cs(t) > c∗ for all times so that we obtain the following lower bound for
welfare along (xs(t), cs(t))t∈(0,∞)∫ ∞

0

[
ln cs(t)− βxs(t)2

]
e−ρtdt ≥

∫ ∞

0

[
ln c∗ − βx∗2

]
e−ρtdt

=
ln c∗ − βx∗

ρ
. (10.9)

The steady state values x∗ and c∗ in equation (10.9) are some given finite
numbers. On the other hand, equation (10.8) has to hold for arbitrarily small
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Figure 18 : Stable manifolds for the saddle point stable steady states in Figure 12 and 14
(α = .52, β = 1 and ρ = 3%).

c̄. Because the logarithm approaches negative infinity as c̄ approaches zero,
we can pick a c̄ small enough to assure that

ln c̄

ρ
<

ln c∗ − βx∗

ρ
.

Thus, the welfare along (xo(t), co(t))t∈(0,∞) is strictly less than the welfare
along (xs(t), cs(t))t∈(0,∞) and a trajectory leading into the origin cannot be
optimal.

We are left with trajectories converging to the steady states x∗, x∗∗, and
x∗∗∗. For the unstable steady state x∗∗ that “trajectory” is only the point
itself. If we draw the stable manifolds leading into the steady states x∗ and
x∗∗∗ we obtain Figure 18. We denote the stable manifold leading into the
oligotrophic steady state x∗ by T1 and that leading into the eutrophic steady
state x∗∗∗ by T2. Under a slight abuse of notation we also denote by T1(x)
and T2(x) the loading along trajectories T1(x) and T2(x) corresponding to
the phosphorous stock x.81 Increasing the phosphorous stock from x∗ moving

81The loading corresponding to some phosphorous stock along the trajectories is not
everywhere unique because of the spiraling nature. For reasons that become obvious
below, we only use the lower branch of the spiral of T1 when we write T1(x) and the
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along T1 (in inverted time) we find an intersection with the ẋ = 0 line. Let
xs denote this (first respectively last in real time) intersection of trajectory
T1 with the ẋ = 0 curve. Observe that because ẋ = 0 and ċ ̸= 0 at this
point the trajectory is vertical. Similarly, decrease the phosphorous stock
from x∗∗∗ moving along T2 (in inverted time) and denote the first upcoming
intersection with the ẋ = 0 line by xs.

For a phosphorous stock below xs there is only one candidate trajectory
leading into a steady state. Thus, for an initial stock x0 < xs we take the
path T1 that leads us into the oligotrophic steady state. Above xs there is
also just one trajectory leading into a steady sate. Thus, for an initial stock
x0 > xs we take the path T2 that leads us into the eutrophic steady state.
However, between the points xs and xs we can either choose a loading that
puts us on the trajectory leading into the oligotrophic steady state, or we
can choose a loading to put us on the trajectory leading into the eutrophic
steady state. Both trajectories satisfy all the necessary conditions for an
optimum.82 Close to the unstable steady state we even have the possibility
to jump on either of the stable manifold at different points of the spiral (at an
‘earlier’ point or a ‘later’ point of the same trajectory that spirals out toward
the saddle point stable steady state). First, we will show that it is always
optimal to choose the loading in a way to be on the outermost (or ‘latest’)
branch of the spiral leading into a given steady state. Then, we show that
there exists a stock of phosphorous between xs and xs such that for an initial
stock above that point it is optimal to converge into the eutrophic steady
state, while for an initial stock below that point it is optimal to converge
into the oligotrophic steady state. Such a point xs is called a Skiba point
after (Skiba 1978) contribution first showing the existence of such a point in
a convex-concave production problem.

Proposition 6: It is not optimal to pick a point on the spiraling manifold
leading into either of the steady states that comes back to the same
phosphorous stock (at a later point on the trajectory with a different
loading).

The proof of the proposition makes use of the following observation.

upper branch of the spiral of T2 when we write T2(x).
82Note that the transversality condition trivially holds in the steady states because

λ = − 1
c is constant.
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Lemma 3: Let a trajectory (xc, cc) ≡ (xc(t), cc(t))t∈[0,∞) satisfy the neces-
sary conditions for an optimum including the transversality condition
limt→∞ e−ρtH(xc(t), cc(t), λc(t)) = 0. Then

H (xc(0), cc(0), λc(0)) = ρ

∫ ∞

0

[
ln cc(t)− βxc(t)2

]
e−ρtdt︸ ︷︷ ︸

≡W (xc(0),cc(0))

.

Note that λ(t) along the trajectory is uniquely determined by λ(t) = − 1
c(t)

.

Moreover note that W (xc(0), cc(0)) is well defined (whenever it exists) as for
any point in the (x, c) space there is (at most) a unique trajectory passing
through it that satisfies the necessary conditions.

Proof of lemma 3: Let Hps(c, x, λ, t) denote the present value Hamilto-
nian. Then along a path satisfying the necessary conditions for an optimum
it holds

dHps

dt
=
dHps

dc

dc

dt
+
dHps

dx

dx

dt
+
dHps

dλ

dλ

dt
+
∂Hps

∂t

= 0 +
dHps

dx

dHps

dλ
+
dHps

dλ

(
−dH

ps

dx

)
+
∂Hps

∂t
=
∂Hps

∂t
.

Moreover at t = 0 the present value and the current value Hamiltonian
coincide so that

H(cc(0), xc(0), λc(0)) = Hps(cc(0), xc(0), λc(0), 0)

= lim
t→∞

Hps(cc(t), xc(t), λc(t), t)−
∫ ∞

0

∂Hps

∂t
dt

= lim
t→∞

e−ρtH(cc(t), xc(t), λc(t))−∫ ∞

0

∂

∂t

[
ln(cc(t)− βxc(t)2

]
e−ρtdt

= 0 +

∫ ∞

0

ρ
[
ln(cc(t)− βxc(t)2

]
e−ρtdt

= ρW (xc(0), cc(0))

2



10.5 The Optimal Consumption Paths 272

Note that the above relation only makes sense because a point (xc(0), cc(0))
in phase space uniquely determines W (xc(0), cc(0)) (see above) as well as
H(cc(0), xc(0), λc(0)) by optimality implying λc(0) = − 1

cc(0)
. If we analyze

a change in the phase space location (x, c) we have to pick and vary λc(0)
according to the optimality condition λc(0) = − 1

cc(0)
for the above relation

to hold.

Proof of Proposition 6: Let c0 = cc(0) and x0 = xc(0). By lemma 3 we
have

∂W

∂c0
=

1

ρ

dH

dc0

∣∣∣∣
x̄0,λ(c0)

=
1

ρ

∂H

∂c0︸︷︷︸
=0

+
1

ρ

∂H

∂λ0

dλ0
dc0

=
1

ρ

dλ

dc0
X(c0, x0) =

1

ρ

1

c20
X(c0, x0) (10.10)

whenever limt→∞ e−ρtH(xc(t), cc(t), λc(t)). Expression (10.10) is positive above
the ẋ ≡ X(c, x) = 0 line and negative below it. Thus, for a given initial stock
we can increase welfare by moving further out on the spiral away from the
ẋ = 0 line. Thus, if any of the intersections of the ‘out-spiraling’ stable
manifolds with the x = x0 line is optimal, then it must be on either of the
outermost branches of the spiral. For a manifold leading into a steady state
with finite value of H the condition limt→∞ e−ρtH(xc(t), cc(t), λc(t)) is obvi-
ously satisfied.83 2

Lemma 4: With an initial phosphorous stock of xs it is optimal to take
trajectory T1 into the oligotrophic steady state. With an initial phos-
phorous stock of xs it is optimal to take trajectory T2 into the eutrophic
steady state.

Proof of Lemma 4: In xs either T1 or T2 must be optimal. By equa-
tion (10.10) the Hamiltonian takes on a higher value at (xs, T1(xs)) than
at (xs, T2(xs)) because moving down from T2(xs) where X(c, x) = 0 the
Hamiltonian increases. Thus, by lemma 3 we know that the path from
(xs, T1(xs)) along the trajectory T1 into the oligotrophic steady state yields

83Why can’t we further increase welfare by moving away from the ẋ = 0 curve beyond
the stable manifolds leading into steady states x∗ or x∗∗∗?
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a higher welfare than the path (xs, T2(xs)) along the trajectory T2 into
the eutrophic steady state, i.e. W (T1(xs), xs) > W (T2(xs), xs). Similarly,
at xs the Hamiltonian is larger in (xs, T2(xs)) than in (xs, T2(xs)) as by
equation (10.10) the Hamiltonian increases from moving up from T1(xs)
where X(c, x) = 0. Thus, in xs welfare along trajectory T2 is higher, i.e.
W (T2(xs), xs) > W (T1(xs), xs). 2

The question which trajectory is optimal in the interval (xs, xs) can be an-
swered by calculating the so called Skiba point. We will only show that a
Skiba point xs with the following properties exists.

Proposition 7: There exists a point xs ∈ (xs, xs) such that

• for an initial stock x0 < xs it is optimal to take trajectory T1 into
the oligotrophic steady state.

• for an initial stock x0 > xs it is optimal to take trajectory T2 into
the eutrophic steady state.

• for an initial stock x0 = xs the social planner is indifferent between
trajectories T1 and T2.

Proof of Proposition 7: For x ∈ [xs, xs] define the function ∆W (x) =
W (T1(x), x)−W (T2(x), x). In the proof of Lemma 4 we have shown

∆W (xs) = W (T1(xs), xs)−W (T2(xs), xs) > 0 and

∆W (xs) = W (T1(xs), xs)−W (T1(xs), xs) < 0 .

Moreover, we know that d
dx
W = λ and thus d

dx
∆W = d

dx
W (T1(x), x) −

d
dx
W (T2(x), x) = λ(T1(x))−λ(T2(x)) = 1

T2(x)
− 1

T1(x)
< 0. Hence somewhere

between xs and xs there is a unique point xs satisfying ∆W (xs) = 0. Here
W (T1(x), x) = W (T2(x), x) and both trajectories are optimal. For x < xs

we have ∆W (x) > 0 and, thus, W (T1(x), x) > W (T2(x), x) and T1 optimal.
For x > xs we have ∆W (x) < 0 and, thus, W (T2(x), x) > W (T1(x), x) and
T2 optimal. 2

That finishes our analysis of the socially optimal control of the shallow lake.
See Mäler et al. (2003) and Kossioris, Plexousakis, Xepapadeas & de Zeeuw
K.-G. Mäler (2008) for a game theoretic extension and ?? [Wagener 2003]
for relating Skiba points and bifurcations.
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11 Dynamic Programming in Continuous Time

This section introduces dynamic programming in continuous time. First,
we take the continuous time limit of the dynamic programming equation we
used in discrete time. We arrive at a partial differential equation called the
Hamilton Jacobi Bellman equation. Second, we derive the Hamilton Jacobi
Bellman equation more formally as a sufficient condition for an optimum.
We then relate the continuous time dynamic programming approach to the
Maximum Principle. Finally, we solve a linear quadratic example as an
example of an infinite horizon autonomous problem. For these cases we
can transform the partial differential equation into an ordinary differential
equation.

11.1 The Continuous Time Limit of the Dynamic Pro-
gramming Equation

Recall the dynamic programming equation (DPE) we encountered in discrete
time. We can write the DPE as

J(xt, t) = max
yt

U(xt, yt, t) + J(xt+1, t+ 1)

s.t. xt+1 = g(xt, yt, t), x0 given .

In order to take the continuous time limit we replace the unit time step by
the time step ∆t. In this step we have to be careful to identify those terms
that are densities and have to be multiplied with the time step.84 In the
evaluation function the utility is a density characterizing utils per time step
(or alternatively profits per time step), while the value function is an absolute
measure of welfare (or profits). For the constraint we pick a convenient form
for the discrete time equation of motion that can be turned straight forwardly
into its continuous time analog

J(xt, t) = max
yt

U(xt, yt, t) ∆t+ J(xt+∆t, t+∆t)

s.t. xt+∆t = xt + f(xt, yt, t) ∆t, x0 given .

84We already observed that we had to turn “hidden ones” into ∆t in section 7 when we
took the continuous time limit for the equation of motion for a pollution stock (see 7.3).
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You can verify that for example the equation of motion for our stock pollution
problem in equation (7.3) in section 7.3 is of this form. In the continous time
limit the constraint turns into the same form for the equation of motion as in
our continuous time formulation of the intertemporal optimization problem
in section 7

ẋ = lim
t→∞

xt+∆t − xt
∆t

= f(xt, yt, t) .

Expanding the value function in ∆t delivers

J(xt, t) = max
yt

U(xt, yt, t) ∆t+ J(xt, t) +
∂J(xt, t)

∂xt

xt+∆t − xt
∆t

∆t

+
∂J(xt, t)

∂t
∆t+ o(∆t) .

Substituting the constraint into the dynamic programming equation and can-
celing the value function leaves us with

0 = max
yt

U(xt, yt, t)∆t+
∂J(xt, t)

∂xt
f(xt, yt, t) ∆t+

∂J(xt, t)

∂t
∆t+ o(∆t) .

We observe that the term involving the (partial) time derivative of the value
function is independent of the control. Rearranging it to the other side,
deviding the equation by ∆t, and taking the limit ∆t→ 0 yields

− ∂J(xt, t)

∂t
= max

yt
U(xt, yt, t) +

∂J(xt, t)

∂xt
f(xt, yt, t) . (11.1)

Equation (11.1) is called the Hamilton-Jacobi-Bellman (HJB) equation. It
is a first order partial differential equation, i.e. it depends of the first par-
tial derivatives in more than one variable. With a finite time horizon we
generally have a boundary condition of the form J(xT , T )

!
= Γ(x) with Γ(x)

characterizing the scrap value of the stock at the end of the planning hori-
zon. Note that one of the assumptions involved in our derivation is that the
value function is continuously differentiable, otherwise the above first order
approximation would be meaningless.
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11.2 A Neat Derivation of the HJB Equation as a
Sufficient Condition for an Optimum

Let us define the maximized Hamiltonian as

Ĥ(xt, λt, t) = max
y
H(xt, y, λt, t)

= max
y
U(xt, y, t) + λt f(xt, y, t) .

Then, we can restate the Hamilton Jacobi Bellman equation (11.1) in terms
of the maximized Hamiltonian as85

∂J(x, t)

∂t
+ Ĥ

(
x,
∂J(x, t)

∂x
, t

)
= 0 . (11.2)

We assume that there exits a continuously differentiable function J(x, t) that
solves the partial differential equation (11.2) (which coincides with equation

11.1) subject to the boundary condition J(xT , T )
!
= Γ(x). The function Γ(x)

represents the scrap value of the stock variable and is more formally known
as the Mayer term. Integrating the total time derivative of the continuously
differentiable function J(xt, t) along a feasible path (xt, yt)t∈[t0,T ] over time
implies

J(xT , T ) = J(xt0 , t0) +

∫ T

t0

∂J(xt, t)

∂x
f(xt, yt, t) +

∂J(xt, t)

∂t
dt .

85We can define the left hand side of equation (11.2) as a new Hamiltonian arising under
a suitable (canonical) transformation of variables. In these new variables the differential
equations defining the necessary condition of the maximum principle introduced in section
7 become trivial and the new state and co-state variables are constant. Transforming the
Hamiltonian canonical equations, i.e. the differential equation for the state and the co-
state variable in the maximum principle, in a way that makes the differential equations
trivial is a motivation for the Hamilton-Jacobi equation in Physics and was derived before
Richard Bellman developed it in the current context.
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Moreover, along any such feasible path we find that∫ T

t0

U(xt, yt, t)dt + J(xT , T )

=

∫ T

t0

U(xt, yt, t) +
∂J(xt, t)

∂x
f(xt, yt, t) +

∂J(xt, t)

∂t
dt + J(xt0 , t0)

=

∫ T

t0

H

(
xt, yt,

∂J(xt, t)

∂x
, t

)
+
∂J(xt, t)

∂t
dt + J(xt0 , t0)

≤
∫ T

t0

Ĥ

(
xt,

∂J(xt, t)

∂x
, t

)
+
∂J(xt, t)

∂t︸ ︷︷ ︸
=0 because J solves HJB

dt + J(xt0 , t0)

= J(xt0 , t0) ,

with equality for the optimal control path y∗. We have shown that a path

(x∗t , y
∗
t )t∈[t0,T ] satisfying H

(
x∗t , y

∗
t ,

∂J(x∗
t ,t)

∂x∗
t
, t
)
= Ĥ

(
x∗t ,

∂J(x∗
t ,t)

∂x∗
t
, t
)
maximizes

the objective function within the set of all feasible paths. Moreover, the
function J(xt0 , t0) solving the Hamilton Jacobi Bellman equation for a given
terminal scrap value function Γ(x) gives us the maximal value of our program.

11.3 Relation to the Maximum Principle

There is an immediate relation between the Maximum principle discussed in
section 7 and the HJB equation. Let us define the value of a marginal unit
of the stock at time t by

λt =
∂J(xt, t)

∂xt
. (11.3)

Then, we can rewrite the HJB equation (11.2) in terms of the maximized
Hamiltonian as

− ∂J(xt, t)

∂t
= Ĥ (xt, λt, t) . (11.4)

The Hamiltonian characterizes the (partial/direct) time change of the value
function. Equation (11.4) confirms our earlier interpretation of the Hamilto-
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nian in section 7 as the overall contribution to welfare in terms of immediate
gratification and change in stock value in period t. Precisely, equation (11.2)
states that the decrease in the value function from t to t+dt is proportional to
the Hamiltonian, i.e. to the lost contribution to the overall value by omitting
period t. Finally, note that a free terminal state in the maximum principle
corresponds to a terminal value function Γ(x) that is independent of x in

the HJB formulation. Then we have λt =
∂J(xT ,T )

∂xT
= ∂Γ(x)

∂x
= 0 confirming

our earlier interpretation of the transversality condition that if the terminal
state was free, the stock at the terminal time should be of no value to us.

We can also derive the co-state equation of motion of the Maximimum Prin-
ciple from the HJB. Differentiate equation (11.2) with respect to the state
variable to obtain

−∂
2J(xt, t)

∂xt∂t
=
∂Ĥ (xt, λt, t)

∂xt

∣∣∣∣∣
λt=

∂J(xt,t)
∂xt

+
∂Ĥ (xt, λt, t)

∂λt

∣∣∣∣∣
λt=

∂J(xt,t)
∂xt

∂2J(xt, t)

∂x2t

Under the assumption that J is twice continuously differentiable we can ex-
change the order of the time and the state partial derivatives of J . From
the envelope theorem we know that the partial of the maximized Hamilto-
nian (suppressing the control) simply gives us back the partial of the full
Hamiltonian (containing the control has an explicit variable), so that

− ∂2J(xt, t)

∂t∂xt
=
∂Ĥ (xt, λt, t)

∂xt

∣∣∣∣∣
λ=

∂J(xt,t)
∂xt

+ f(xt, yt, t)
∂2J(xt, t)

∂x2t
. (11.5)

Moreover, along a feasible path, the total time derivative of λt is by defini-
tion (11.3)

λ̇t =
d

dt

∂J(xt, t)

∂xt
=
∂2J(xt, t)

∂t∂xt
+
∂2J(xt, t)

∂x2t
ẋt

=
∂2J(xt, t)

∂t∂xt
+
∂2J(xt, t)

∂x2t
f(xt, yt, t)

Combining the latter equation with equation (11.5) we obtain the equation
of motion for the co-state variable featuring as a necessary condition in the
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Maximum Principle

λ̇t = −∂H (xt, yt, λt, t)

∂xt
. (11.6)

We used again the envelope theorem in order to replace the maximized Hamil-
tonian by the original Hamiltonian evaluated along the optimal path. Obvi-
ously, equation (11.6) has to hold jointly with the condition that we maximize
the Hamiltonian over the control.

11.4 Autonomous Problems with Infinite Time Hori-
zon, Example and General Approach

In general the HJB equation is difficult to solve. We obtain a significant
simplification if we can separate the time dependent part in equation (11.4)
from the state dependent part. The following is one of the simplest non-
trivial examples:

max

∫ ∞

0

−ay
2 + bx2

2
exp[−δt] dt s.t. ẋt = y ,

x0 given, a, b > 0, and the scrap value assumed to be zero. Then the HJB
becomes

−Jt(x, t) = max
y

−ay
2 + bx2

2
exp[−δt] + Jx(x, t)y

⇔ −Jt(x, t) exp[δt] = max
y

−ay
2 + bx2

2
+ Jx(x, t) exp[δt]y .

We observe that the only time dependence in the differential equation is the
exponential adjacent to the value function. Thus, we try the form J(x, t) =
V (x) exp[−δt]:

δV (x) exp[−δt] exp[δt] = max
y

−ay
2 + bx2

2
+ Vx(x) exp[−δt] exp[δt]y

⇔ δV (x) = max
y

−ay
2 + bx2

2
+ Vx(x)y . (11.7)
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The result is an ordinary differential equation (ODE) in the state variable.
Without the max operator equation (11.7) would be a first order linear dif-
ferential equation as the derivative of the value function enters the equation
only linearly. Unfortunately, carrying out the maximization transforms it
into a non-linear first order ODE:

max
y

−ay
2 + bx2

2
+ Vx(x)y

⇒ −ay + Vx(x) = 0 ⇒ y =
Vx(x)

a
, (11.8)

implying the (inhomogenous) differential equation

δV (x) = −Vx(x)
2

2a
− bx2

2
+
Vx(x)

2

a

⇔ δV (x)− Vx(x)
2

2a
= −bx

2

2
. (11.9)

Equation (11.9) is called a Ricatti differential equation and it is about the
simplest Ricatti differential equation you can get in this context. The easiest
approach to solving this equation is a good guess. Recall that we already
know from the discrete time case that a good shot for a trial is a quadratic
value function V (x) = αx2, transforming equation (11.9) into

δαx2 − 2α2x2

a
= −bx

2

2

⇔
(
δα− 2α2

a
+
b

2

)
x2 = 0 ,

which is satisfied for all x whenever

α2 − aδ

2
α = +

ab

4

⇔ α =
a

4

(
δ ±

√
δ2 +

4b

a

)
.

So our trial solution worked and

V (x) = αx2 =
a

4

(
δ ±

√
δ2 +

4b

a

)
x2 .
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Given that our value function has to be everywhere (weakly) negative we
know that the negative root is the correct one and we have

J(x, t) = V (x) exp[−δt] = a

4

(
δ −

√
δ2 +

4b

a

)
x2 exp[−δt] .

Furthermore we obtain the optimal control in feedback form from equation
(11.8)

y(x) =
Vx(x)

a
=

2αx

a
=

1

2

(
δ −

√
δ2 +

4b

a

)
x .

We obtain the solution for the time path of the state variable by integrating
the equation of motion for the optimal control

ẋt =
2αx

a
⇒ xt = x0 exp

[
2αt

a

]
,

which converges to zero given that α < 0.

Our simplistic equation of motion ẋt = y bought us equation (11.9), the fact
that the value function only depends on the stock quadratically, and that
we only have to solve a single quadratic equation for α. You can add linear
terms to the objective function and make the equation of motion for the
state a more general linear function and still follow the same procedure as
above. Then the Ricatti differential equation (11.9) will look slightly more
complicated and you will have to set up a trial solution that also incorporates
linear and affine parts. Collecting terms by the power of x gives you three
generally dependent algebraic equations that you can solve for the affine,
linear, and quadratic coefficient in the value function.

The transformation of the partial differential equation into an ordinary dif-
ferential equation in the example works more generally for autonomous prob-
lems with an infinite time horizon:

max

∫ ∞

0

u(xt, yt) exp[−δt] dt s.t. ẋt = f(xt, yt) ,

x0 given. Define J(xt, t) = V (x) exp[−δt] and, assuming once more sufficient
differentiability of the value function, use it as a trial solution for the HJB.
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We obtain

δV (x) exp[−δt] = max
y
u(xt, yt) exp[−δt] + Vx(x) exp[−δt]f(xt, yt)(11.10)

⇒ δV (x) = max
y
u(xt, yt) + Vx(x)f(xt, yt) ,

which once more is an ordinary differential equation. Equation (11.10) has
an immediate and insightful interpretation. It tells us that along an optimal
path the overall welfare is proportional to the value of the sum of the imme-
diate welfare gain in terms of u and the change in stock weighted with the
proper accounting price Vx(x). The proportionality factor is our pure rate of
time preference.

So far we have not paid any attention to the infinite horizon boundary and
transversality conditions. The issues with necessary and sufficient conditions
in the infinite time horizon are similar to those for the maximum principle.
We don’t generally obtain a necessary transversality conditions without fur-
ther assumptions. The sufficient condition for an optimum stated in section 7
for the maximum principle translates by rewriting the shadow value in terms
of the current value value function into

lim
t→∞

exp(−δt)∂V (x)

∂x
xt ≥ 0

for all feasible paths. However, I have not yet identified a careful proof under
which circumstances it is a sufficient condition in continuous time dynamic
programming. The proof of the HJB as a sufficient condition in section 11.2
suggests another sufficient condition. Observe that the inequality holds also
in the limit of an infinite time horizon if

lim
t→∞

J(xt, t) = 0

for all feasible paths. Translated into the time independent function V we
have the sufficient condition

lim
t→∞

exp[−δt]V (xt) = 0 .
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12 Event Uncertainty

A class of problem involving uncertainty can be modeled using either deter-
ministic optimal control or stochastic control of a jump process – defined as a
stochastic process whose realization can be a discontinuous function of time.
We illustrate both of these approaches using a problem in which the prob-
ability of a random event depends on the value of a state variable that the
decision maker controls. For example, the probability of a climate-related
catastrophe might depend on the stock of GHSs. At a point in time this
stock is predetermined, so the decision maker is not able to affect the prob-
ability of the catastrophe over the next short interval of time. However, by
choosing an emissions path, the decision maker chooses the trajectory of the
stock of GHGs, and thereby influences the probability of catastrophe in the
future.

12.1 Preliminaries

The building block of this kind of model is the hazard function, which gives
the probability of an event (such as a catastrophe) over the next small interval
of time, conditional on the event not having yet occurred. Denote τ as
a random variable, the time at which this event occurs, and denote the
cumulative distribution function as F (t) = Pr {τ ≤ t}. We assume that this

function is differentiable, so f(t) ≡ dF (t)
dt

is the probability density function.
For small dt, f(t)dt is approximately the probability that the event occurs
during the interval of time (t, t+ dt).

If A and B are two random events, then using the rule for conditional prob-
abilities we have

Pr (A | B) =
Pr (A ∩B)

Pr (B)
.

This formula states that the probability of event A, given that event B
has occurred, equals the probability that both A and B occur divided by
the unconditional probability that B occurs. Think of event A as being
“the disaster occurs over the interval (t, d+ dt)” and event B being “the
probability does not occur by time t”. Applying the formula for conditional
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probabilities, we have

Pr {event occurs during (t+ dt) | event has not occurred by t} (12.1)

= h(t)dt ≡ f(t)dt

1− F (t)
.

The function h(t) is the hazard rate. If we interpret dt = 1 as an “instant”,
then the hazard rate equals the probability that the event occurs during the
next instant, given that it has not yet occurred.

One of the earliest applications of event uncertainty involves the problem
of life-time consumption when death occurs at a random time (cite Yari).
For this problem, the probability of the “event”, death, is exogenous: the
decision maker cannot alter the future risk, but he can adjust his consumption
decisions to take the risk into account. We use this problem to illustrate the
method of analysis, before turning to the problem of interest, in which the
decision maker affects future risk.

If death occurs at time t, the present discounted value of the agent’s welfare
at the initial time 0 is∫ t

0

e−rsU (cs) ds+ d (t)B (k(t)) . (12.2)

In this problem, the instantaneous flow of utility is the increasing and concave
function U(c) and the pure rate of time preference (the discount rate) is r.
The amount of wealth that the decision maker bequeaths to his heirs is k(t),
and B(k) is the utility that the decision maker obtains from this bequest;
d(t) discounts utility of the bequest at time t back to the first period. The
function d(t) could have a variety a shapes. For example, it might be
small for t close to 0 and close to T but large for intermediate values of t;
this shape would arise if the decision maker does not worry about leaving a
bequest before he has a family (small t) or after the family is grown (large t),
but is concerned about the bequest during his middle age, when his family
is young.

The decision maker is able to invest wealth at a constant rate of return i and
receives an exogenous income stream Y (t), so his wealth obeys the differential
equation

k̇ (t) = ik(t) + Y (t)− c(t), k(0) = k0, given. (12.3)
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The probability distribution function for the random time of death, t, is F (t),
with F (0) = 0 and F (T ) = 1. The first equality states that the decision
maker is certainly alive at time 0, and the second states that he is certainly
dead by time T . The decision maker is risk neutral and maximizes the
expectation of lifetime utility

max
{c}

Et

∫ t

0

e−rsU (cs) ds+ d (t)B (k(t)) (12.4)

= max
{c}

∫ T

0

[∫ t

0

e−rsU (cs) ds+ d (t)B (k(t))

]
f(t)dt.

The term in square brackets is lifetime utility conditional on death occurring
at time t; we multiply this term times the probability of death at time t,
f(t), and integrate over t to obtain the expectation of lifetime utility.

Denote

z(t) =

∫ t

0

e−rsU (cs) ds =⇒
dz

dt
= e−rtU (ct) (12.5)

and integrate the first term on the right side of equation 12.4 by parts, using
f(t) = F ′(t) to obtain∫ T

0

z(t)f(t)dt =

∫ T

0

z(t)F ′(t)dt = z(t)F (t) |T0 −
∫ T

0

F (t)
dz

dt
dt

=

∫ T

0

e−rtU (ct) dt−
∫ T

0

F (t)e−rtU (ct) dt

=

∫ T

0

(1− F (t)) e−rtU (ct) dt.

The third equality uses the fact that z(0) = 0 and F (T ) = 1. Using the
expression after the last equality, we write the expected payoff in equation
12.4 as

max
{c}

∫ T

0

[
(1− F (t)) e−rtU (ct) + d (t)B (k(t)) f(t)

]
dt. (12.6)

At each point in time, t, if the agent is alive he obtains the present value
utility of consumption e−rtU (ct), and if he dies at that point in time he
obtains the present value utility of the bequest d (t)B (k(t)). The probability
of the first event is (1− F (t)) and the probability of the second event is f(t).
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The expected payoff is the integral over time of the two payoffs, weighted
by their probabilities. Equation 12.3 is the constraint to the optimization
problem.

These manipulations transform the original problem involving risk into an
almost standard deterministic problem. Recall that in a deterministic prob-
lem the optimal control rule can be written either as a function of time, i.e.
as an open loop control rule, or as function of the state variable (and possi-
bly also of time), i.e. as a feedback rule. The two solutions are equivalent
because in a deterministic setting the decision maker does not acquire new
information as time goes on. The control problem consisting of expression
12.6 and the constraint 12.3 appears to be a deterministic problem, because
the random time of death has been “concentrated out”, i.e. removed by
taking expectations.

Thus, it appears that the decision maker can choose at the initial time t = 0
the entire trajectory of consumption. This appearance is correct, provided
that we interpret the optimal consumption trajectory as conditioned on the
event that the decision maker is still alive when he attempts to carry out
the proposed plan. This caveat may seem like a semantic quibble, but it is
particularly important when we consider an infinite horizon version of this
problem.

It is also worth noting that the optimal solution to this problem is time
consistent. In this context, time consistency means that if the decision maker
follows the plan that is optimal at time t = 0 up to some time t = s > 0 and
then reoptimizes, the optimal solution is the continuation of the plan that
he chose at time t = 0. If he is still alive at time s > 0 then his objective is

max
{c}

1

1− F (s)

∫ T

s

[
(1− F (t)) e−rtU (ct) + d (t)B (k(t)) f(t)

]
dt.

The information that he is still alive at time s causes the density f(t) to

be replaced by the conditional density f(t)
1−F (s)

and the probability 1− F (t) to

be replaced by a conditional probability 1−F (t)
1−F (s)

but these changes amount to
nothing more than dividing through by a constant, and therefore they do not
alter the optimal plan.

Define the integrand as

G(t, k, c) = (1− F (t)) e−rtU (ct) + d (t)B (k(t)) f(t)
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and write the Hamiltonian as

H = G+ λ (ik(t) + y(t)− c(t)) .

The first order condition for maximization of the Hamiltonian is

∂H

∂c
= Gc − λ = e−rt (1− F (t))U ′ (ct) = λ, (12.7)

which states that the present value of marginal utility at time t, multiplied
by the probability that the decision maker is still alive at time t, equals the
shadow value of wealth. The costate equation is

λ̇ = −Gk − iλ. (12.8)

Using the menu for analyzing this kind of problem, developed in Chapter
7, we differentiate equation 12.7 with respect to time, use equation 12.8 to
eliminate λ̇, and then use equation 12.7 to eliminate λ. After dividing
through by c, we have the optimal growth rate in consumption equal to

ċ

c
=

(i− r − h)

RRA(c)
+

h

RRA(c)

[
d(t)B′(k)

e−rtU ′ (c)

]
, (12.9)

where RRA(c) ≡ −U′′c

U
> 0 is the relative risk aversion and the hazard rate

h is defined in equation 12.1. For example, with U(c) = ln c, RRA(c) = 1.
[Chapter 3.]

In the risk-free analog to this problem where the time of death is known to
be T , the Euler Equation simplifies to

ċ

c
=

(i− r)

RRA(c)
. (12.10)

In this risk-free case, the transversality condition is λ (T ) = d(T )B′ (kT ),
which states that the shadow value of wealth at the time of death equals the
present value of the marginal value of the bequest. In the problem with
risk, equation 12.7 implies, using F (T ) = 1, that λ (T ) = 0. With risk, the
consumption profile insures that the shadow value of wealth is 0 at t = T .
This difference in transversality condition, between the two problems, reflects
the fact that in the absence of risk, utility from the bequest is obtained only at
t = T . In the presence of risk, the utility of the bequest affects the expected
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flow of utility (the function G) at every point in time where f(t) > 0, i.e.
where the hazard is positive. This effect is apparent in the second term
on the right side of equation 12.9, which is absent in the risk-free analog,
equation 12.10. The term in square brackets in equation 12.9 is the ratio of
the present value of the marginal utility of the bequest, to the present value
of the marginal utility of consumption.

The second term in the Euler Equation 12.9 is positive, but because the
risk of death changes the entire consumption profile, risk changes the level
at which we evaluate the derivatives in the equation. Therefore, we cannot
simply compare the right sides of equation 12.9 and 12.10 to determine the
effect of risk. The two expressions are evaluated at different levels of c and k.
The effect of uncertainty, on the optimal consumption profile in the general
form of the problem is therefore not easy to determine.

In the special case where B ≡ 0, the second term in equation 12.9 vanishes,
and the role of risk is transparent: an increase in risk (larger h) is equivalent
to a time-varying increase in the pure rate of time preference, r. A higher
discount rate causes the decision maker to value the future less because of
greater impatience; a larger hazard rate causes the decision maker to value
the future less because there is a greater chance that he will not be alive to
enjoy it. Thus, increases in either r or h have the same qualitative effect:
shifting consumption from the future to the present.86 This observation is
probably the most important insight from this branch of the literature, with
exogenous risk. It is common to invoke the risk of a catastrophe that wipes
out civilization, as an ethical basis for discounting the future, as in the Stern
Review (cite here). If there is a chance that civilization will disappear, it
seems reasonable to take this possibility into account when making social
investments, such as those designed to protect against climate change.

12.2 Endogenous risk

The key feature in the problem studied in Chapter 12.1 is that risk there is
exogenous: the decision maker cannot influence the hazard rate. There are
many situations in which the decision maker influences the hazard rate for an

86Problem: Show that in the consumption problem without risk, when the bequest
function is 0, a higher level of the discount rate increases the current level of consumption
at any time and at any level of wealth k > 0.
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event. For example, consider the problem of machine maintenance, where
the random event is the breakdown of a machine. One possibility is that the
hazard rate at a point in time depends on how carefully the decision maker
operates the machine at that instant. Another possibility is that the hazard
rate depends on how well-maintained the machine has been throughout its
history. In both of these cases, the hazard rate is endogenous. In the
first case, however, the hazard rate depends on current actions, and in the
second case it depends on the history of actions. The second case is more
complex because it requires an additional state variable that captures the
effect of past actions. Of course, the actual hazard may depend on both
current actions and the history of actions. For example, the probability that
a car breaks down during a particular trip (corresponding to an instant, in
a continuous time setting) depends both on how it is driven during the trip
(the next instant) and how it has been driven over the past years.

Here we study the problem where the risk of catastrophe depends on the stock
of pollution. The key to simplifying this model is the assumption that the
post-catastrophe payoff is 0. This assumption simplifies the problem for the
same reason that setting the bequest B(k) ≡ 0 simplifies the uncertain-time-
of-death model above. After we examine the case with post-catastrophe
payoff equal to 0, we consider more complicated models where the payoff
depends on the stock of pollution at the time of the catastrophe.

We denote the stock of pollution as x and the flow of emissions as y. The
stock of pollution evolves according to

ẋ = y − g(x), x(0) = x0, given (12.11)

where the (not necessarily linear) g (x) is the natural decay rate. We assume
that g(x) is continuous in x and that the optimal y is a continuous function
of time, so that ẋ is a continuous function of time. The decision maker’s
flow of utility is U(x, y), increasing and concave in emissions, y, and weakly
decreasing and concave in pollution, x. A larger flow of pollution means that
more resources are devoted to consumption which increases utility, and fewer
resources are devoted to abatement. A larger stock of pollution decreases
the flow of welfare, in addition to increasing the risk of a catastrophe. The
pure rate of time preference is r.

The hazard rate at time t depends on the stock of pollution at that time.
With some abuse of notation, we write the hazard rate as h(t) = h(x(t)),
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with h(x) a differentiable function. The time of catastrophe is a random
variable. If the catastrophe occurs at time t, the value of the stream of
welfare, discounted back to time 0, is

z (t) ≡
∫ t

0

e−rsU(xs, ys)ds. (12.12)

Our use of z(t) to denote this level of welfare emphasizes the similarity be-
tween the problems here and in the previous section.

Now consider an arbitrary pollution trajectory x (t). This trajectory induces
a trajectory for F (t), the probability that the catastrophe has occurred by
time t. By assumptions above, the hazard function is differentiable in x,
which (in equilibrium) is a continuous function of time, so the density f(t) =
dF
dt

exists. Therefore, we can write the planner’s maximand as

Etz(t) =

∫ ∞

0

z(t)
dF

dt
dt =

∫ ∞

0

z(t)f(t)dt. (12.13)

By choosing the emissions trajectory, the planner chooses the pollution tra-
jectory, and thereby chooses the function f(t); here risk is endogenous. We
assume that the planner is not able to bring the level of risk arbitrarily close
to 0, or that it would be prohibitively expensive to do so. For example, elim-
inating risk might require the elimination of the pollution stock, which might
be possible to achieve only asymptotically, and then only if consumption re-
mains at 0 forever. If the marginal utility of consumption becomes large as
consumption goes to 0, such a program is not optimal. Thus, f(t) ≥ ε for
some ε > 0; these inequalities imply that limt→∞ F (t) = 1: with probability
1, the catastrophe eventually occurs. The catastrophe has not yet occurred
at time 0, i.e. F (0) = 0.

Integrating the last expression in equation 12.13 by parts (as in the previous
section), and using limt→∞ F (t) = 1, we write the expected payoff as∫ ∞

0

(1− F (t)) e−rtU(xt, yt)dt. (12.14)

We want to choose an emissions path to maximize this expression. This
expression is not an adequate basis for optimization, however, because it does
not reflect the fact that F (t) depends on the entire trajectory of {xs}t0. To
model this dependence, we define the survival probability, S(t) = 1 − F (t),
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the probability that the catastrophe has not occurred by time t. Taking
the derivative with respect to time, we find that the rate of decrease of the
survival probability equals the hazard rate:

−
dS(t)
dt

S(t)
=

dF (t)
dt

1− F (t)
= h(x(t)).

Here we use the definition of the hazard rate and the fact that it is a function
of the current pollution stock. In order to facilitate the interpretation of
subsequent expressions, we also define w = − lnS, which implies

S (t) = e−w(t) = 1− F (t) (12.15)

and
dw(t)

dt
= h(x(t)), w(0) = 0. (12.16)

The initial condition, w(0) = 0 states that the catastrophe has not occurred
by the initial time, t = 0, i.e. the probability of surviving until time 0 is
1. This assumption is innocuous. If the catastrophe had occurred by time
0, there is no decision problem. The problem makes sense only if it begins
before the catastrophe occurs.

With these definitions, we can write the maximand, expression 12.14, as∫ ∞

0

e−rt−w(t)U(xt, yt)dt. (12.17)

The inclusion of risk “resembles” an increase in the discount rate: the pres-
ence of risk changes the discount factor from e−rt to e−rt−w(t), with w(t) > 0.
We noted that in the case where risk is exogenous, as in Section 12.1, the pres-
ence of risk has the same effect as an increase in the discount rate. Here,
however, risk is endogenous. Higher current consumption entails higher
emissions, which increase the future trajectory of pollution, decreasing the
future survival probability, thereby decreasing future expected utility.

The optimization problem consists of the maximand, expression 12.17, and
the equations of motion for the pollution stock and the variable w, equa-
tions12.11 and 12.16, together with their boundary conditions. In the case
of exogenous risk, we were able to convert the problem under uncertainty into
a deterministic control problem, at the cost of making the objective some-
what more complicated. Here we achieve a deterministic control problem,



12.2 Endogenous risk 292

but the cost is the inclusion of an additional state variable, w. There is no
free lunch.

The current value Hamiltonian for this control problem is

H = e−wU(x, y) + µ1 (y − g(x)) + µ2h(x),

where µ1 and µ2 are the costate variables associated with the pollution stock,
x, and the risk variable, w. The necessary condition for maximizing the
Hamiltonian, and the costate equations are

e−wUy(x, y) + µ1 = 0 (12.18)

µ̇1 = µ1 (r + g′)− µ2h
′ − e−wUx (12.19)

µ̇2 = rµ2 + e−wU. (12.20)

Equation 12.18 has the usual interpretation: at the optimum, the marginal
utility of an additional unit of emissions must equal the negative of the
shadow value of the stock of pollution. This shadow value is negative.

We obtain the differential equation for emissions by following the usual pro-
cedure: we differentiate equation 12.18, then use equations 12.19 and 12.20
to eliminate µ̇1 and µ̇2, and then use equation 12.18 to eliminate µ1. The
necessary conditions contain a single algebraic equation, because there is only
one control variable. We can use this algebraic equation to eliminate only
one of the costate variables. Thus, the differential equation for emissions
still contains one costate variable. Following the steps listed above, this
differential equation is

ẏ = a (y, x) + b (y, x, ρ, h (x)) (12.21)

where

a (y, x) ≡ (r + g′)Uy + Ux − (y − g)Uxy

Uyy

b (y, x, ρ, h (x)) =
h(x)Uy + h′ (x) ρ

Uyy
(12.22)

and
ρ (t) ≡ ew(t)µ2 (t) . (12.23)

We decomposed ẏ into two functions. The function a is independent of the
hazard function, a fact that becomes useful when we consider the comparative
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statics of the steady state with respect to the risk. Note also that we
eliminate the costate variable µ2 using the definition in equation 12.23. The
reason for this definition will be apparent shortly.

At this level of generality, we can learn little about the optimal trajectory
or the effect of risk outside the steady state. Therefore, we concentrate on
steady state analysis. We assume that the trajectories in both the problems
with and without risk (conditionally) converge to steady states. We want to
know how risk affects the level of the steady state stock of pollution. Two
points are important in considering this analysis.

First, recall that the trajectory of the control variable and the associated
stock of pollution are conditioned on the event not yet having occurred.
Therefore, the steady state that we examine is the level of pollution to which
the stock would asymptotically converge provided that the catastrophe does
not occur. This conditional convergence occurs only as t → ∞. However,
we adopted assumptions above that imply that limt→∞ F (t) = 1, i.e. the
catastrophe occurs with certainty as t becomes infinitely large. (We used
that assumption in evaluating a limit when integrating by parts to obtain
the maximand in expression 12.14.) Given continuity, we know that for any
1 > ε > 0, there exists a τ (ε) such that the probability that the disaster
has occurred is greater than 1 − ε for t > τ (ε). If we look far enough
into the future, we can be arbitrarily sure that the catastrophe has occurred.
Nevertheless, we are interested in the effect of risk on a steady state, even
though we know that the catastrophe is virtually certain to occur before the
stock of pollution gets extremely close to that steady state. Hereafter, when
we speak of the steady state, the reader should keep in mind that this is a
conditional steady state; moreover, we know that the catastrophe will occur,
and the problem end, before the actual pollution stock gets “very close” to
the steady state, unless the initial condition happens to be very close to the
steady state.

The second point is that we do not obtain the algebraic conditions that deter-
mine the steady state simply by setting the equations of motion for the state
variables and the costate variables equal to 0, and using these together with
the first order condition 12.18 to obtain five algebraic equations to solve
for the five unknowns: the two state variables and corresponding costate
variables and the control variable. Such a procedure would be nonsensical
because the state variable w does not approach a steady state. Our assump-
tions above which imply that h (x) is bounded away from 0, and equation
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12.16, imply that w(t) diverges to infinity.

We therefore have to be a bit careful in determining the algebraic equations
that determine the steady state. We are interested in a steady state for
the pollution stock, x. From equation 12.11 we see that ẋ = 0 requires
that y is a constant in the steady state, i.e. ẏ = 0. Equation 12.21 implies
that in order for y to be constant, it must be the case that ρ is constant.
Taking derivatives of equation 12.23 and using equations 12.16 and 12.20 to
eliminate the costate variable, we obtain an expression for ρ̇. Setting this
expression equal to 0 we obtain the steady state value of ρ, which we denote
(with obvious abuse of notation) as

ρ = − U (x, y)

r + h(x)
= −

∫ ∞

0

e−hte−rtUdt. (12.24)

Hereafter it is understood that ρ, x and y refer to steady state values unless
we indicate otherwise by using a time argument. Equation 12.24 states
that (the steady state) ρ equals the negative of the expected value of the
program at the steady state. We include the second equality in equation
12.24 in order to emphasize that ρ equals the negative of the integral of the
constant flow U , discounted at rate r and multiplied by the probability that
the catastrophe occurs by time t. In the steady state, where the hazard is
constant, the random time of catastrophe is exponentially distributed.

We now have the ingredients to obtain the steady state values. Clearly a
steady state for x requires

y = g(x). (12.25)

We set ẏ = a (·) + b (·) = 0, using equations 12.24 and 12.25 to write the
steady state condition for y:

(r + g′ + h)Uy + Ux =
Uh′

r + h
. (12.26)

Equations 12.25 and 12.26 are two equations in two unknowns, the steady
state value of the pollution stock and emissions.

Before we use these equations to determine the effect of risk on the steady
state, we digress to explain the meaning of the variable ρ. In particular,
we want to explain why it must be constant in a steady state, even though
neither w nor µ2 converge to constants. Define the expected present value
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of the program at time t, given that the catastrophe has not yet occurred
and given that the system begins in a steady state, as W :

W = Eτ

∫ τ

t

e−r(s−t)Uds =
U

r + h
. (12.27)

Due to the assumption that we begin in a steady state, W is independent of
calendar time. Define J as the expectation at time 0 of the current value of
the program at time t:

J = S(t)W.

That is, J equals the value of the program given that the system survives
until time t (W ) times the probability that it survives until time t, (S(t)).
Now recall the interpretation of a shadow value. The shadow value of w, the
costate variable µ2, equals the marginal change in the value of the program
due to a change in the value of the state variable, here w. Using this
interpretation of the costate variable and equation 12.15, we have

µ2 (t) =
∂J

∂w
=
∂ (S(t)W )

∂w
=
∂
(
e−w(t)W

)
∂w

= −e−w(t)W

Rearranging, and using equation 12.23 we have

ew(t)µ2(t) = ρ (t) = −W.

This equation implies that in the steady state ρ (t) is constant, even though
neither w nor µ2 converge to constants. The derivation also provides another
way of seeing that the steady state value of ρ equals the negative of the
expectation of the value of the program, beginning with a pollution stock in
the steady state.

We now return to consider the effect of risk on the steady state pollution
stock. First note that in the absence of risk, the steady state condition
12.26 reduces to the familiar (from Chapter xx) requirement that

Uy =
−Ux

r + g′
= −

∫ ∞

0

e−(r+g′)Uxdt. (12.28)

In the steady state the marginal value of emissions is Uy. An extra unit of
emissions creates an extra unit of stock which creates additional damages Ux.
However, this additional unit decays at the constant rate g′, so the additional
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damage t units of time in the future is e−g′tUx. The present value of this
future loss is e−rt

(
e−g′tUx

)
. The accumulation of all of these losses is the

integral in equation 12.28. The steady condition requires that the marginal
benefit of an additional unit of emissions equals the marginal cost of that
additional unit.

In the absence of risk, the equations of motion for the stock of pollution and
the flow of emission are equations 12.11 and 12.21 with b ≡ 0. By linearizing
this system at the deterministic steady state, we obtain(

ẋ
ẏ

)
≈
[
−g′ 1
ax ay

](
x
y

)
= A

(
x
y

)
,

where the matrix A is defined implicitly. We noted in Chapter xx that if
there is a steady state in a deterministic control problem, then it must be a
saddle point. We have assumed that the trajectory converges to a steady
state. Therefore, this steady is a saddle point; this conclusion implies (using
the results from Chapter xx) that | A |< 0.

To determine the effect of risk on the steady state, we proceed in two steps.
First, we determine how any non-zero value of the function b (y, x, ρ, h (x))
affects the level of the steady state; then we determine the effect of risk on
the value of b (·). To achieve the first step, consider the pair of equations
y− g(x) = 0 = a(y, x)− b. In order to determine the effect of b on the (or a)
value of x that is part of the solution to this system, we totally differentiate
the system and use Cramer’s Rule to obtain

dx

db
=

1

| A |
< 0, (12.29)

where the inequality uses the fact that the steady state is a saddle point.
Thus, we have accomplished the first step. We know that a positive value of
b decreases the steady state stock of pollution, and a negative value increases
the steady state stock. To accomplish the second step, we use equalities 12.1
and 12.24 to write

b > 0 ⇐⇒ Uy

U
<

h′

(r + h)h
. (12.30)

Relation 12.30 tells us the qualitative effect of risk on the steady state. At
one extreme, suppose that the risk is exogenous. In this case, h is indepen-
dent of x, i.e. h′ ≡ 0, so the second inequality in relation 12.30 is not satisfied;
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here, b < 0, and inequality 12.29 implies that risk increases the steady state
stock of pollution. This conclusion is consistent with the intuition developed
in Chapter 12.1, where we saw that the inclusion of exogenous risk is quali-
tatively the same as increasing the discount rate. In Chapter xx we noted
that a higher discount rate increases the steady state stock of pollution. At
the other extreme, suppose that the risk is sensitive to the stock of pollution.
In this case, h′ is large; if it is sufficiently large that the second inequality
in relation 12.30 is satisfied, then risk reduces the steady state stock. More
generally, risk decreases the steady state stock of pollution if the ratio h′

h
is

large, and increases the steady state stock if this ratio is small.

The analysis shows that the distinction between avoidable and unavoidable
risk is crucial. If the risk is unavoidable, it increases the incentive to eat,
drink and be merry (for tomorrow we die), thereby driving up the stock of
pollution. However, if the risk is avoidable, we should be more ascetic,
keeping the stock of pollution small in the hope that we will survive another
day.

12.3 A jump process

The stochastic control of jump processes provides an alternative way of an-
alyzing the problem with event uncertainty. Using a jump processes rather
than converting the stochastic problem to a deterministic one (as above) is
especially convenient if there is more than a single kind of event, or if the
magnitude of the event might take different values. The jump process model
is also useful if the state variable being controlled could have discontinuities.

For example, emissions leads to the accumulation of GHGs, and the higher
GHG stock increases the probability of melting permafrost; this melting leads
to rapid release of additional GHGs. If this rapid increase transpires on a
faster time scale than the ordinary accumulation of GHG stocks, it may be
reasonable to approximate it as a jump. The melting of the permafrost
might not be a catastrophic event, and there may be various levels of melt-
ing, corresponding to which there are various levels of the jump in GHGs.
For example, in the absence of melting the GHG stock does not jump, and
different levels of melting lead to a jump of, for example, 1, 2, or 3 additional
units of GHG stock. These events increase the state variable by a discrete
amount, but need not lead to catastrophes. After such an event occurs,
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the decision maker continues with the problem, only with a higher stock of
GHGs.

In the interest of simplicity, we emphasize the case in which the jump can take
a single value. We then apply the procedure to the problem of catastrophic
change considered above.

12.3.1 The DPE for a jump process

Here we provide the necessary conditions for optimal control of a jump pro-
cess. In this section, we define the state variable as v, rather than x ad
above, because subsequently we treat v as a vector. We want to reserve the
symbol x to be the pollution stock, as above.

The equation of motion for the state variable v, with control variable y is

dv = f(v, y)dt+ dπ, v(0) = v0, given (12.31)

where

Pr {dπ = c} = C (v, y) dt (12.32)

Pr {dπ = 0} = 1− C (v, y) dt (12.33)

We write the equation of motion in differential form, because if a jump at time
t the change in v is discontinuous; therefore, the time derivative of v does not
exist at time t. In this setting, π (t) is a stochastic process; at each point in
time the change in π, dπ, takes one of two values: c with probability C (v, y) dt
and 0 with probability 1−C (v, y) dt. We could generalize to a multivariate
distribution, by allowing the change in the random variable to take a third
value, say g, with probability G(v, y)dt. In that case, the probability of
no jump equals 1 − [C (v, y) +G (v, y)] dt. This model implies that the
probability of an event over a small interval of time, dt, is proportional to
the length of that interval, and may depend on the value of the state variable
and control variable at the beginning of the interval.

Suppose that the flow of welfare is L (v, y, t) and the decision maker wants to
maximize the expectation of the integral of this flow over [0, T ]. We obtain
the continuous time dynamic programming equation using almost the same
approach taken in Chapter xx. The only difference is that here we have an
expectations operator because the equation of motion is random. Unlike the
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continuous time stochastic control problem in Chapter yy, we do not have to
use the Ito calculus. As a consequence, we use a first order Taylor expansion
(as in the deterministic setting) rather than a second order Taylor expansion
(as in the continuous time stochastic control setting).

First, we define the value function as the expectation of the maximized value
of the program, given an arbitrary starting time t and value of the state
variable v. Second, we break the integral into two parts, “the next short
interval” and “everything after the next short interval” . Third, we recognize
that the expectation of the maximized value of “everything after the next
short interval” equals the value function at the later date and the new value
of the state variable. The following three equations show these three steps:

J (v, t) = max
{y}Tt

E{π}Tt

∫ T

t

L(v, y, s)ds

= max
{y}t+dt

t

E{π}t+dt
t

[∫ t+dt

t

L(v, y, s)ds+ max
{y}Tt+dt

E{π}Tt+dt

∫ T

t+dt

L(v, y, s)ds

]

= max
{y}t+dt

t

E{π}t+dt
t

[∫ t+dt

t

L(v, y, s)ds+ J (v + dv, t+ dt)

]
. (12.34)

The first order Taylor expansion of the expectation of the integral is

E{π}t+dt
t

[∫ t+dt

t

L(v, y, s)ds

]
= L(v, y, t)dt+ o (dt) . (12.35)

The first order Taylor expansion depends on the current values of v, y, t,
which are known; thus the expectations operator is vacuous here.

We use equations 12.31 - 12.33 to write

E{π}t+dt
t

[J (v + dv, t+ dt)]

= (C (v, y) dt)× J (v + f(v, y)dt+ c, t+ dt)

+ (1− C (v, y) dt)× J (v + f(v, y)dt, t+ dt) .

This equation uses the fact that the value of dv depends on the stochastic
value of dπ. The first order Taylor expansion of the last expression equals

E{π}t+dt
t

[J (v + dv, t+ dt)]

= J (v, t) + [J (v + c, t)− J (v, t)]× (C (v, y) dt) (12.36)

+ Jv (v, t) f(v, y)dt+ Jt (v, t) + o (dt) .
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Using equations 12.35 and 12.36 in the last line of equation 12.34, we obtain

J(v, t) = max
y

[L(v, y, t)dt+ J (v, t) + [J (v + c, t)− J (v, t)]× (C (v, y) dt)

+ Jv (v, t) f(v, y)dt+ Jt (v, t) + o (dt)].

We cancel J(v, t) from both sides, divide by dt and take the limit as dt→ 0
to obtain the DPE for the control problem with a jump process:

−Jt (v, t) = max
y

[L(v, y, t) + Jv (v, t) f(v, y) (12.37)

+ [J (v + c, t)− J (v, t)]× (C (v, y))].

If the problem is autonomous, i.e. if T = ∞ and L(v, y, t) = e−rtU(v, y),
then the value function is multiplicatively separable, with the form J(v, t) =
e−rtV (v). Substituting this form into the DPE, we have the DPE for the
current value function V (v):

rV (v) = max
y

[U(v, y) + Vv (v) f(v, y) + [V (v + c)− V (v)]× (C (v, y))] .

(12.38)

We obtain the DPE for the deterministic control problem if either c = 0 or
C(v, y) ≡ 0. The inclusion of risk adds the term [J (v + c, t)− J (v, t)] ×
(C (v, y)) in the case of the non-autonomous problem and the term [V (v + c)− V (v)]×
(C (v, y)) in the case of the autonomous problem. Both of these terms equal
the loss in the value of the program due to the occurrence of the jump, times
the probability of this occurrence.

12.3.2 The jump process and catastrophic risk

In order to apply the DPE above we need to treat the state v as a vector.
The first element of v is the pollution stock, x, with the equation of motion
12.11. The second element of v is the stochastic process, π. We interpret π
as an indicator function: π = 0 implies that the disaster has not yet occurred,
and π = 1 implies that the disaster has occurred. Once the disaster occurs,
it cannot be reversed; subsequent utility is 0, and the problem is over. Using
the definition of the hazard rate, we have the equation of motion for π.

Pr {dπ = 1 | π = 0} = h (x) dt

Pr {dπ = 0 | π = 0} = 1− h (x) dt

Pr {dπ = 1 | π = 1} = 1.



12.3 A jump process 301

The “current value” value function is V (x, π). We have V (x, 1) = 0, re-
flecting the fact that once the catastrophe occurs, the continuation value is
0; V (x, 0) equals the maximized value of the expectation of the discounted
stream of pre-catastrophe utility, U(x, y). Using these definitions in the
current value DPE 12.38 yields the DPE for this problem, given the initial
condition π = 0:

rV (x, 0)

= max
y

[U(v, y) + Vx (x, 0) f(v, y) + [V (x, 1)− V (x, 0)]× h(x)]

= max
y

[U(v, y) + Vx (x, 0) (y − g(x))]− V (x, 0)h(x) =⇒

(r + h(x))V (x, 0)

= max
y

[U(v, y) + Vx (x, 0) (y − g(x))] .

The formulation of the DPE in the last two lines shows the manner in which
the risk of catastrophe plays a role analogous to an increase in the discount
rate. However, the risk, unlike the discount rate, is endogenous.

The first order condition for an interior maximization of the right side of the
DPE is

Uy(v, y) + Vx (x, 0) = 0. (12.39)

Applying the envelope theorem to the DPE (i.e. differentiating both sides of
the DPE with respect to x and evaluating at the maximum) gives

h′V (x, 0) + (r + h)Vx (x, 0) = Ux(v, y)− Vx (x, 0) g
′ + Vxx (x, 0) (y − g(x)) .

Evaluating this expression at a steady state, where y − g(x) = 0, gives

h′V (x, 0) + (r + h)Vx (x, 0) = Ux(v, y)− Vx (x, 0) g
′. (12.40)

We use the first order condition 12.39 and evaluate the DPE in the steady
state (where (r + h(x))V (x, 0) = U(v, y)) to eliminate V and Vx from equa-
tion 12.40 to obtain the steady state condition

h′
U

r + h
− (r + h+ g′)Uy = Ux. (12.41)

Equations 12.26 and 12.41 are equivalent, as of course they must be, since
they are the result of analyzing the same problem, using different methods.
The analysis using jump processes is (arguably) simpler, because it does not
require using the definition of ρ in equation 12.23.
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12.4 Recent applications

This section [under construction] discusses recent applications of models of
event uncertainty to problems in environmental and resource economics.
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13 Stochastic Control

This section introduces continuous time stochastic methods. Continuous
time methods can help us to find closed form solutions and to render tedious
discrete time calculations more elegant. They also expand the set of numeric
solution techniques. After reviewing the basics of continuous time stochastic
processes we introduce the standard Brownian motion (Wiener process). It
serves as the point of departure for a large set of continuous diffusion pro-
cesses that economists employ to model stochastic prices or resource stocks.
These diffusion processes defy the usual definition of integration and differ-
entiation. We introduce the stochastic integral heuristically and explain the
resulting rules of Ito’s differential calculus. We discuss basic stochastic dif-
ferential equations and their relation to partial differential equations. Then,
we extend dynamic programming to the stochastic continuous time setting
and explore a resource extraction problem. The first section of this chap-
ter reviews the basics of probability theory required to introduce stochastic
processes.

13.1 Probability Theory and Stochastic Processes -
A Brief Review

We invite the reader familiar with probability spaces and measure theory to
skip to the next section. Here, we review some basic concepts of probability
theory that prove useful or even essential for continuous time stochastics. In
probability theory, a probability space defines what we need to talk meaning-
fully about a stochastic problem at hand. First, the sample space Ω defines
the set of possible outcomes ω ∈ Ω. An outcome ω can be the realization of a
coin toss, or a sequence of coin tosses, or the realization of a resource price or
its entire path. For example, let our space of interest be the outcome of rolling
a die. The sample space Ω has the six elements ω1 = 1, ω2 = 2, ..., ω6 = 6.
Generically, we write that ω = ωi for a particular realization. In our example,
we would write more naturally ω = 5 if the die shows the number 5.

Second, a probability space requires a σ–algebra F (sigma–algebra) on Ω. It
defines the sets of outcomes (events) that the observer can distinguish. For
example, an event can be the set {ω1, ω2}, which we interpreted as either
ω1 or ω2 having occurred. If we were to bet on the die showing either of
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1 or 2 this information is all we require to know whether we won. Note
that whenever we know whether {ω1, ω2} occurred, we also know whether its
complement {ω3, ω4, ω5, ω6} occurred: if the die shows either 1 or 2 it cannot
show 3, 4, 5, or 6; if it does not show 1 or 2, then it must show one of 3, 4, 5,
or 6. A σ–algebra summarizes a consistent information set on Ω by requiring
that if some event is part of F then also the complement of the event has to
be part of F . More precisely, a σ–algebra on Ω satisfies the following axioms

1. It contains the sample space Ω: Ω ∈ F .

2. With any element it also contains its complement: E ⊂ F ⇒ Ec ⊂ F .

3. It is closed under infinite unions: Ei ∈ Ω ∀i ∈ IN ⇒ ∪∞
i=1Ei ∈ F .

Why do we include unions of different events? If we know whether the die
shows one of 1 or 2 ({ω1, ω2}) and we know whether the die shows one of 3
or 4 ({ω3, ω4}) then we also know whether the die shows one of 1 through 4
({ω1, ω2, ω3, ω4}) . If we merely bet on our die showing either of 1 or 2, we
are content with the σ–algebra F = {∅, {ω1, ω2}, {ω3, ω4, ω5, ω6},Ω}}. If we
want to distinguish all possible outcomes of rolling the die we need a richer
σ–algebra, the power set 2Ω. The power set of Ω is the set of all subsets. For
finite outcome spaces, its cardinality is two to the power of the cardinality
of the sample space Ω, which explains the common notation “2Ω”.

There are two reasons for not simply choosing the power set as the underlying
σ–algebra F . First, we often want to model partial information by choosing
a coarser set than the power set. In particular, if a realization ω characterizes
a time path of a resource price, the σ–algrebra capturing our present infor-
mation should distinguish only those realizations that differ in the past, but
not those realizations that only differ in the future. This ideas will lead us to
the definition of a filtration (a time indexed sequence of σ–algebras) further
below. Second, if the sample space Ω is not finite, the power set is so large
that it contains (somewhat pathological) events whose probabilities we can-
not reasonably define (measure). In this case the “analogue” of the power set
for finite sample spaces is the Borel set (or Borel σ–algebra), which contains
all the events (subsets) whose probabilities we possibly want to measure, but
excludes the pathological sets.

Third, a probability space contains a probability measure. In general, a map
IP : F → IR is a probability measure if
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1. The probability of the full set is unity: IP(Ω) = 1.

2. Any event has a non-negative probability: IP(E) ≥ 0 ∀E ∈ F .

3. IP is σ–additive: IP(
∑∞

i=1Ei) =
∑∞

i=1 IP(Ei), where
∑∞

i=1Ei denotes
the union of pairwise disjoint events Ei ∈ F .

The conceptual difference between a probability measure and a probability
distribution is that the measure defines the probability directly for all events,
e.g., including the event {ω1, ω2}. Note that probability measures deal with
discrete and continuous distributions jointly.87 The triple (Ω,F , P ) (sample
space, σ–algebra, probability measure) defines a probability space.

A random variable maps a stochastic event into a some measurable outcome,
e.g., your payoff. Formally, it is a map X : (Ω,F) → (Ω̂, F̂), where Ω is our
sample space and F the σ algebra on Ω. The set Ω̂ describes the possible out-
comes of the random variable (e.g. payoffs) and is usually a subset of the real
numbers. The set F̂ is a σ–algebra on Ω̂ and characterizes the corresponding
payoff events to which we want to assign probabilities. Continuing our exam-
ple from above, assume that we are betting $100 on the event {ω1, ω2} that a
die shows either of the numbers 1 or 2. If we loose, we owe $50 to the bank.
Then, the random variable X maps the event {ω1, ω2} into the value 100 and
the event {ω3, ω4, ω5, ω6} into the value -50. A reasonable way to define the

87There is a close relation between probability measures and cumulative distribution
functions (cdfs) for probabilities that are defined on a number space. Given a probability
measure on a sufficiently rich σ–algebra, we obtain the cumulative distribution function
by defining F (x) ≡ IP(ω ≤ x). Perhaps more interestingly, we also have a converse. Any
function F : IR → [0, 1] that satisfies

1. F is monotonically increasing,

2. F is right-continuous,

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1,

defines a probability measure on the Borel set (think of it as the set of all possibly inter-
esting events) that is uniquely pinned down by requiring IP((a, b]) ≡ F (b) − F (a) for all
a ≤ b (which is a requirement on only a small subset of the sets in the Borel σ-algebra).
We invite the reader to test that this definition also works for our example of a die, where
the cdf has discontinuous jumps (of height 1

6 ) to the left of 1, 2, 3, 4, 5, 6 (it is right con-
tinuous). In the discrete case it is somewhat trivial that defining the probabilities for
all individual outcomes contains the necessary information to define the probability of all
possible events. In the continuous case, one has to proof that the probability measure
extends uniquely from some subset to the σ–algebra generated by these sets.
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sample space of our numeric values is Ω̂ = {−50}, {100} and a reasonable
way to define the σ–algebra F̂ is as the set {∅, {−50}, {100}, {−50, 100}.
We say that our random variable X is (F , F̂)–measurable, or simply measur-
able, if we can meaningfully assign probabilities to each element of F̂ given
a probability measure on F . In our example, we want to be able to assign
probabilities to the payoff events $-50 and $100 given a the probability space
(Ω,F , P ) that characterizes our roll of the die. If our σ–algebra of the under-
lying probability space is F = {∅, {ω1, ω2}, {ω3, ω4, ω5, ω6},Ω}} we are good.
Say IP assigns the probability 1

3
to the event {ω1, ω2} and the probability 2

3

to its complement we can assign the probability 1
3
to the payoff $100 of our

random variable and the probability 2
3
to our payoff $-50 (loss). If instead our

σ–algebra of the underlying probability space is the power set F = 2Ω then
we are just as good. The power set is much richer than the earlier σ–algebra
and we obtain the same probabilities on the payoff space.

Now assume that the σ–algebra of the underlying probability space is F =
{∅, {ω1, ω3, ω5}, {ω2, ω4, ω6},Ω}}. This σ–algebra only contains the informa-
tion whether the die shows an odd of an even number. In this case, our
underlying probability space does not allow us to assign probabilities to the
payoffs of our random variable, which maps the outcome of seeing either of
1 or 2 into the payoff $100 and the complement to $-50. We say that our
random variable is not measurable. Based on the information available in our
probability space we cannot say whether we won or whether we lost and we
cannot measure our payoff. Formally, the random variable X is measurable
if X−1(F̂) ≡ {X−1(E)|E ∈ F̂} ⊂ F , i.e., if the inverse image of any event in
the payoff space is measurable in the original probability space. If the random
variable X is measurable, we can define the implied probability measure IPX

on the payoff space for all events E ∈ F̂ by defining IPX(E) = IP(X−1(E)).

Given a probability space (Ω,F , IP), we define a continuous time stochastic
process as a measurable function X : Ω × [0,∞) → IR. We write Xt(ω) to
denote the realized value at time t for state of the world ω. Note that a
realization of ω pins down the full path, not just one period’s realization.
We would not want to define the probabilistic realizations period by period
because we have to be able to characterize the joint distribution of the re-
alizations at different points in time, e.g., to introduce serial correlation or
even to define independence. Constructing the underlying probability space
(Ω,F , IP) for general stochastic processes is quite technical and achieved by
Kolmogorov’s extension theorem. The theorem provids the existence of the
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underlying probability space (Ω,F , IP) if we specify the joint distribution of
our stochastic processes in consistent manner. As a consequence, we usually
don’t even spell out the probability space, but work with the joint distribu-
tions instead. The next section will rely on Kolmogorov’s extension theorem
when we introduce the Brownian motion by characterizing it’s joint distri-
bution.

A filtration captures an observer’s information at a given point in time. For-
mally, it is an increasing sequence of σ-algebras {F t}t≥0 with F t ⊂ F for
all t. By an increasing sequence of sets we mean that t1 < t2 ⇔ F t1 ⊂ F t2 .
By definition, the filtration F t2 at the later time t2 is finer than the filtration
F t1 at time t1 and the filtration at time t2 can distinguish more events (events
that realized between t1 and t2). A stochastic process X : Ω × [0,∞) → IR
is adapted to the filtration {F t}t≥0 if its realization in period t given by

Xt : Ω → IR is (F t, F̂)–measurable for all t, where F̂ is the σ–algebra on our
payoff space, usually the Borel set.

Martingales are a particularly convenient class of stochastic processes. Let
X be a stochastic process that is adapted to the filtration {F t}t≥0. It is a
martingale if E(Xt2| F t1) = Xt1 . Here, E(Xt2| F t1) denotes the expectation of
Xt2 conditional on the information in period t1 < t2. Thus, a martingale is a
stochastic process whose best forecast for a future period is it’s present value.
Note that a conditional expectation of a random variable is itself a random
variable: the expectation depends on the information at time t1, which (usu-
ally) only realizes in period t1. Another way to observe this stochastic nature
of the conditional expectation is by realizing that the conditional expecta-
tion above equals Xt1 , which is a random variable. A convenient property
of conditional expectations is the law of iterated expectations, or tower law.
It holds for all random variables Z, not just for martingales, and states: if
E(|Z|) < ∞ and F t1 ⊂ F t2 then E[E(Z| F t2)| F t1)] = E(Z| F t1). A forecast
of a random variable Z cannot be improved by conditioning it on the finer
information set F t2 if that information set itself has to be forecasted based
on the coarser information set F t1 .

13.2 Brownian Motion

The Brownian Motion is a stochastic process that underlies virtually all diffu-
sion processes, i.e., stochastic processes without jumps. The standard Brow-
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nian motion is known as the Wiener process. It formalizes the concept of
a random walk in continuous time. A symmetric random walk in discrete
time denotes a model in which a particle (or a price) move up or down by
an equal amount with equal probability in every period. The best guess for
the particles future location in the random walk model is it’s present loca-
tion (martingale property). The variance of its position increases linearly in
time.88 The Brownian motion captures these characteristics in continuous
time.

For a formal definition, we denote the underlying probability space by (Ω,F , P )
and define the stochastic process X or Xt as a measurable function X :
Ω × [0,∞) → IR. We write Xt(ω) to denote the realized value at time t for
state of the world ω. A Wiener process or standard Brownian motion is a
stochastic process B defined by the properties89

1. B0 = 0;

2. For any time t and s > t the difference Bs −Bt is normally distributed
with mean zero and variance t − s, i.e., Bs − Bt = ϵt,s

√
s− t with

ϵt,s ∼ N(0, 1);

3. The increments for non-overlapping time intervals are independent, i.e.

88We can model the particle’s location by a binomial distribution identifying the steps
up with the number of “successes”. The variance of a binomial distribution is proportional
to the number of jumps (here: periods). In detail, assume that a particle starts moving
from location zero and moves up or down one unit in every period t ∈ IN. We focus on its
location after an even number of periods t, implying an even location k. If it jumped up
half of the times then the particle is back at zero. For given t, every jump up in addition to
t
2 moves the particle 2 positions up because it jumped one more time up instead of down.

In general, the particle will be at location l if we observed l+t
2 jumps up (successes). So

the particle is at l with probability
(

t
l+t
2

)
1
2t . The variance of the number of successes is t

4 ,

which translates in a variance of the particle’s location of t because every success moves
the particle by two units (one move up instead of down, l = 2k− t, where k is the number
of successes). Note that the binomial distribution B converges to a normal distribution,
which describes the increments of the continuous time Brownian motion that we are about
to introduce.

89Note that continuity of the sample paths is not always required in the definition of
a standard Brownian motion. However, one can show that for any Brownian motion
(defined without the continuity assumption) there exists a continuous modification, i.e.,
a stochastic process that coincides with the original Brownian motion almost surely and
whose realized paths are continuous (as we require directly in the above definition).
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for times t0, t1, ..., tn such that 0 ≤ t0 < t1 < ... < tn < ∞ it holds
E ϵti,ti+1

ϵtj ,tj+1
= 0 for j > i.

4. Each realized path is continuous, i.e., for each ω ∈ Ω the path B(ω, ·) ∈
IR[0,∞) is continuous.

In summary, a Brownian motion is a continuous stochastic process with in-
dependent normally distributed increments whose variance increases linearly
in time.

Zooming in on a Brownian displays a peculiar behavior. For any finite time
difference ∆ = t − s we can rearrange the expression for the change of the
Brownian motion ∆B = Bt −Bs in point 2 of the definition above into

∆B

∆t
=

ϵ√
∆t

.

This (stochastic) difference quotient goes to ∞ when we perform the limit
∆t → 0, implying that the “slope” of the Brownian approaches infinity as
we zoom in far enough. Appendix 13.9.1 formalizes this reasoning. We show
that the absolute variation of a Brownian motion is infinite on any finite time
interval. The absolute variation adds the ups and downs of the Brownian
motion in absolutes. If you were to walk along the path of a Brownian
motion, you had to walk an infinite infinite distance in every ever so small
fraction of a second. Most of these ups and downs cancel each other so that
the net movement if finite. However, the extreme up and down movement
of a Brownian motion on small times scales make it (almost surely) non-
differentiable.90

Let F̄ denote the filtration generated by the Brownian motion B. The σ-
algebra F̄ t captures the information about the past realizations of the Brow-
nian motion B at time t. For technical reasons, we also have to include all
sets of measure zero in the filtration, defining the filtration F as the sequence
of sigma algebras from F̄ and all measure zero sets. For practical purpose,
the filtration F t captures the information made available by the Brownian

90A Brownian motion is Hölder continuous of degree α = .5. A function f is
Hölder continuous of degree α ∈ [0, 1] if there exists a finite constant C such that
frac|f(y)− f(x)||y − x|α < C for all x and y in the domain of f . Note that α = 0
merely implies boundedness, α > 0 implies continuity, and α = 1 implies continuous
differentibility.
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motion at time t. The standard Brownian motion is a martingale: at any
time the best guess for its future value is its current value: E[Bs| F t] = Bt

for all t ≤ s (see point 2 of the definition).

13.3 Stochastic Integration

Assume that the price of a resource stock or an asset follows a Brownian
motion Bt. If we hold a constant amount of the stock f̄ ∈ IR, we can define
our gains (or losses) due to the price change over a time interval [t0, t1) by

f̄ (Bt1 −Bt0) . (13.1)

More generally, the level of the resource stock we hold, or the composition
of an optimal asset portfolio, changes continuously over time. In order to
capture such changes we have to replace expression (13.1) by a stochastic
integral. The stochastic integral extends the classical notion of an integral
or a measure integral by defining integration with respect to a Brownian
motion.

The usual procedure of defining an integral is to define it via summation for a
set of simple functions. Then, approximate a more general set of functions by
help of the simple functions, and then to extend the definition by limit to the
set of general functions. The initial step in defining the stochastic integral is
similar to the familiar procedure. We define the stochastic integral for step
functions, i.e., functions f : [a, b] → IR of the form

f(t) =
n−1∑
i=0

f̄i 1I[ti,ti+1)(t) ∀ t ∈ [a, b], (13.2)

with a = t0 < t1 < ... < tn = b, f̄i ∈ IR∀i, and 1I[ti,ti+1) denoting the unit
function that takes the value one on [ti, ti+1) and zero otherwise. We define
the integral of f with respect to the Brownian motion B as∫ b

a

f(t)dBt ≡
n−1∑
i=0

f̄i(Bti+1
−Bti). (13.3)

The second step approximates a set of general functions by step functions.
However, we cannot simply extend the integral defined in (13.1) to a contin-
uously changing function by taking a point-wise limit of the integral. The
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previous section, and in more detail Appendix 13.9.1, discusses that the ab-
solute variation of the Brownian motion is infinite and that a classical time
limit would imply an infinite slope of the Brownian motion at any given point
in time. In contrast to the absolute variation, the quadratic variation of a
Brownian motion is finite. That is, the squared version of the up and down
movements can be summed resulting in a finite value. The definition of the
stochastic integral uses that the quadratic variation is better behaved than
the absolute variation. The crucial step in defining the stochastic integral is
the Ito-Isometry.

Proposition 8 (Ito-isometry): The integral defined in equation (13.3) sat-
isfies

E

(∫ b

a

ft dBt

)2

=

∫ b

a

E f 2
t dt .

More generally, this results holds for general random processes ft that
are adapted to the filtration F t and square integrable: ft ∈ L2 =
{
∫
f 2
t dt <∞ almost surely}.

The proposition relates the variance of the stochastic integral to a standard
integral with respect to time. The second part of the statement gets ahead of
the our present definition of the stochastic integral. We proof the proposition
for integrals over step functions. By definition (13.3) we have

E

(∫ b

a

f(t) dBt

)2

= E

(
n−1∑
i=0

f̄i(Bti+1
−Bti)

)2

= E
∑
i

f̄ 2
i (Bti+1

−Bti)
2 + E

∑
i ̸=j

f̄if̄j(Bti+1
−Bti)(Btj+1

−Btj)

=
∑
i

f̄ 2
i E(Bti+1

−Bti)
2 =

∑
i

f̄ 2
i (ti+1 − ti) =

∫ b

a

f(t)2 dt . (13.4)

The double sum over i and j in the second line drops out because the in-
crements of a Brownian motion on disjunct time intervals are independent
(property 3 in the definition). The expected value of the square of the incre-
ment of the Brownian motion on the finite time interval ti+1 − ti returns the
time interval by property 2 of the definition of a Brownian motion.
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Intuitively, the general definition of the stochastic integral makes use of line
(13.4) in the proof above and the fact that the quadratic variation of the
Brownian motion is well-defined in the continuous time limit. Formally,
the general definition recognizes the left hand side of the Ito isometry in
Proposition 8 as the norm of the integral

∫ b

a
f(t)2 dBt on our underlying

probability space.91 Similarly, for a deterministic function f , the right hand
side of the Ito isometry is the l2-norm of the function f (the norm defined
by square integrating a function). Thus, the Ito isometry defines a (one to

one) map between the integrals
∫ b

a
f(t) dBt in our probability space equipped

with the l2 norm and the space of all square integrable functions, denoted by
L2. Such a distance preserving one to one map between two metric spaces
is called an isomentry (hence the name Ito isometry). In particular, if a
sequence convergence in one of the isometric spaces, then its image converges
in the other. Now we can use the fact that the subspace of all step functions
lies dense in L2 to extend our definition of the stochastic integral to all
square integrable functions. To define the integral of an arbitrary f ∈ L2,
we approximate it by a sequence of step functions. Then, the Ito isometry
implies that the integral defined in equation (13.3) converges to a well defined
integral of f . So far, we assumed that f was deterministic. A stochastic
integral with respect to deterministic functions is called the Wiener integral
and predates the Ito stochastic integral.

In general, we want to integrate adapted stochastic processes with respect to
a Brownian motion. For example, an optimal decision rule implies that we
sell or buy a stock as a result of the (past) realizations of a Brownian motion
determining its market price. Then, not only the price moves stochastically,
but also the quantity of the stock that we are holding. Because it responds
to the realizations of the price movement, the control of the stock holding is
stochastic process that is adapted to the (filtration of) the Brownian motion
that characterizes the price movement. The extension of the stochastic inte-
gral to general adapted stochastic processes is analogous to the definition of
the Wiener integral that we introduced above. It replaces the deterministic
step functions by stochastic step functions, where the coefficients f̄i in Def-
inition (13.2) are random variables that are measurable with respect to F t.
Then, the Ito isometry is mapping the general integral to square integrable

91The norm is defined as ∥I∥ =
∫
Ω
I(ω)2dIP and the case of the stochastic integral we

have E
(∫ b

a
f(t) dBt

)2
=

∫
Ω

(∫ b

a
f(t) dBt

)2
dIP =

∥∥∥∫ b

a
f(t) dBt

∥∥∥.
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adapted processes that are defined under a combination of the Lebesgue
measure and the underlying probability measure IP.92 As a consequence,
Proposition 8 takes the expected value of the adapted stochastic process on
the right hand side of the Ito isometry.

The resulting integral∫ T

0

ft dBt

is itself an adapted stochastic process with continuous sample paths. More-
over, the integral is linear, i.e., for a, b ∈ IR we have∫ T

0

aft + bgt dBt = a

∫ T

0

ft dBt + b

∫ T

0

gt dBt .

If ft is bounded,
93 then

∫ T

0
ft dBt is itself a martingale. Given that B0 = 0,

we then have

E

∫ T

0

ft dBt = 0

and, by the Ito-isometry,

Var

(∫ T

0

ft dBt

)
=

∫ T

0

Ef 2
t dt .

92In more detail, the adapted process f(t) is a function of ω ∈ Ω and
∫ b

a
Ef(t, ω)2 dt =

E
∫ b

a
(f(t, ω))2 dt =

∫
Ω

(∫ b

a
f(t, ω)2 dt

)
dIP = ∥f∥λ⊗IP where λ is the Lebesgue measure ac-

counting for the standard integration
∫ b

a
f(t, ω)2 dt with respect to time. The norm ∥·∥λ⊗IP

is the l2 norm on the measure space ([a, b]×Ω,B[a, b]⊗F , λ⊗ IP), and B[a, b] denotes the
Borel σ-algebra on the interval [a, b]. Here, the Ito isometry maps the stochastic integral
from the underlying probability space (equipped with the square norm) into the space of all
square integrable function under the measure λ⊗ IP living on ([a, b]×Ω,B[a, b]⊗F , λ⊗ IP)
equipped with the square norm.

93That is, there exists k such that ft(ω) < k for all t and ω ∈ Ω.
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13.4 Ito calculus

We can construct more general diffusion processes as stochastic integrals of
the form

St = α +

∫ t

0

µτ dτ +

∫ t

0

στ dBτ , (13.5)

where α ∈ IR, στ ∈ L2, and µτ ∈ L1, i.e.
∫ t

0
|µτ | dt < ∞ almost surely

for all t. St is an example of an Ito-process. This diffusion process is often
written in the differential form

dSt = µt dt+ σt dBt , S0 = α . (13.6)

However, we remind the reader that a Brownian motion is not differentiable.
Equation (13.6) is only a short-hand notation for equation (13.5). The dif-
ferential definition of a stochastic process is formally interpreted by adding
the omitted integrals back to both sides of the equation.

Whereas we cannot differentiate a Brownian motion, we can differentiate
the expected value of the stochastic process St, if µτ and στ are continuous
(adapted) processes. In particular, it holds

d

dτ
E[Sτ | F t]

∣∣∣∣
τ=t

= µt

d

dτ
Vart(Sτ )

∣∣∣∣
τ=t

=
d

dτ
E[S2

τ | F t]− (E[Sτ | F t])
2

∣∣∣∣
τ=t

= σ2
t

where derivatives are taken from the right. Thus, we can interpret µt as the
change of the expectation of St (conditional on the information available at
time t) and σt as the change of the (conditional) standard deviation at time
t. Commonly, we refer to the process µt as the drift and to the process σt
as the diffusion of the stochastic process St. Let dXt = µ̃τ dτ + σ̃τ dBτ .
The unique decomposition property of Ito processes states that the two Ito
processes St and Xt coincide for all t almost surely if and only if µ̃τ = µτ

and σ̃τ = στ almost everywhere.

We now adapt our differential calculus to evaluate functions of Ito processes.
By definition of a Brownian motion in section 13.2, the standard deviation
evolves with the root of the passing time. As a consequence, we have to
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keep track of second order changes in the Brownian motion even when we
are only interested in first order changes in time. Let F : IR× [0,∞) → IR be
a twice continuous differentiable function of the stochastic process st defined
in equation (13.6) and time. We are interested in the stochastic process
Xt = F (St, t). Expanding Xt first order in t and second order in dBt delivers

dXt = Ftdt+ FSdSt +
1

2
FSS(dSt)

2 + o(dt) .

Inserting µt dt+ σt dBt for dSt we obtain

dXt = Ft dt+ FSµt dt+ FSσt dBt +
1

2
FSSσ

2
t (dBt)

2 + o(dt) .

In the last equation, we omit terms of order dt2 and of order dt dBt. The
intuition for conserving the term (dBt)

2 builds on the second defining charac-
teristic of the Brownian motion (∆Bt = ϵ

√
∆t⇒ E (∆Bt)

2 = E ϵ2∆t = ∆t)
or, more formally, the argument of our calculation in the proof of Proposition
8. By the same argument, we replace (dBt)

2 by dt to obtain the first order
approximation of the total change of Xt over the infinitesimal time interval
dt. A formal version of this reasoning yields Ito’s lemma, a corner stone of
stochastic calculus.

Proposition 9 (Ito’s Lemma): Let St be an Ito process with dSt = µt dt+
σt dBt and let F : IR×[0,∞) → IR be a twice continuously differentiable
function. Then the processXt defined byXt = F (St, t) is an Ito process
with

dXt =

[
FS(St, t)µt + Ft(St, t) +

1

2
FSS(St, t)σ

2
t

]
dt+ FS(St, t)σt dBt .

The new or “non-standard” term 1
2
FSS(St, t)σ

2
t in the Ito formula represents

a contribution from Jensen’s inequality: if the function F is convex in St

then a positive deviation of St from its expected value implies a higher gain
than the loss implied by a negative deviation of the same magnitude. If the
function is linear or if the variance is zero, then the additional term does
not contribute. Thus, the new Ito term is a straight forward implication of
our earlier analysis how Jensen’s inequality affects payoffs under uncertainty,
only that we have continuous fluctuations.
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An application of Ito’s formula analyzes the price process

Xt = c exp[αt+ σBt], t ≥ 0 , (13.7)

c, α, σ ∈ IR. Such a process is called lognormal because the logarithm of
Xt is distributed normally.94 To apply Ito’s lemma, we choose F (Bt, t) =
c exp[αt+ σBt] so that the underlying Ito process is the standard Brownian
motion itself and µt = 0 and σt = 1 and find

dXt = µXt dt+ σXt dBt, X0 = c , (13.8)

where µ = α + σ2

2
. Alternatively, we could have chosen F (St, t) = c exp[St]

with St = αt + σBt and obtained the same result. The process is known as
geometric Brownian motion and frequently employed to model price behav-
ior. The parameter µ specifies the “instantaneous” expected rate of return
and σ the “instantaneous” standard deviation of the rate of return. The
coefficient σ is often called the volatility of Xt. Equation (13.8) is a stochas-
tic differential equation: the right hand side depends itself on the stochastic
process Xt. Ito’s lemma helped us to verify that this stochastic differential
equation has the solution given by equation (13.7).

We close this section by stating Ito’s formula for the case of a multidimen-
sional Brownian motion. We assume that the Brownian motions B1

t , ...B
N
t

are independent and we collect them in (column) vector notation as Bt.
Then, an Ito process is of the form

St = α +

∫ t

0

µτ dτ +

∫ t

0

στ dBτ ,

where α ∈ IR, µτ ∈ L1, and στ = (σ1
τ , ..., σ

N
τ ) with σ1

τ , ..., σ
N
τ ∈ L2. In

differential form the process writes as

dSt = µt dt+ σt dBt , S0 = α .

In general, we can have M such Ito processes, and our function can depend
on all of those processes. Then, we define the vector of stochastic processes

dSt = µt dt+ σt dBt , S0 = α ,

94log(Xt) = log(c) + αt+ σBt and Bt is distributed normally.
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where µt and σt are valued in IRM and IRM×N (underlining marks a matrix).
We call such a process an Ito process in IRM .

Proposition 10 (Ito’s Lemma in IRM): Let St be an Ito process in IRM

as defined above and let F : IRM × [0,∞) → IR be a twice continuously
differentiable function. Then F (St, t) is an Ito process satisfying

F (St, t) = F (S0, 0)

+

∫ t

0

[
FS(Sτ , τ)µτ + Fτ (Sτ , τ) +

1

2
tr
(
στσ

†
τFSS(Sτ , τ)

)]
dτ

+

∫ t

0

FS(Sτ , τ)στ dBτ .

Here, we stated Ito’s lemma in integral form and emphasize that also Pro-
postion 9 is formally interpreted by adding the stochastic integral to both
sides of the equation. The combined derivative under the time integral is
sometimes denoted by D, i.e.,

D F (St, t) ≡ FS(St, t)µt + Ft(St, t) +
1

2
tr
(
στσ

†
τFSS(Sτ , τ)

)
, (13.9)

which reduces the Ito formula to

F (St, t) = F (S0, 0) +

∫ t

0

D F (Sτ , τ)dτ +

∫ t

0

FS(Sτ , τ)στ dBτ .(13.10)

Finally, we note several alternative formulation of the “Ito term” using A =
στ and the symmetry of the matrixB = FSS: tr(AA

†B) =
∑

i,j,k Ai,jA
†
j,kBk,i =∑

i,j,k A
†
j,iBi,kAk,j = tr(A†BA) =

∑
i,j Ci,jBi,j where C = AA† = στσ

†
τ .

13.5 Stochastic Differential Equations

The previous section applied Ito’s lemma to the geometric Brownian motion
Xt = c exp[αt+σBt] and arrived at the stochastic differential equation (13.8).
In contrast, most economic question imply a stochastic differential equation
(SDE) and our answer to the economic question requires us to solve the SDE.
Equation (13.8) is a special case of an SDE of the form

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt, X0 = c , (13.11)
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where µ : IR× [0,∞) → IR and σ : IR× [0,∞) → IR are general functions.

One way of solving SDEs is by means of a sophisticated guess and Ito’s
lemma, just as we did in the previous section for the geometric Brownian
motion. Sometimes, we can derive a successful candidate for guessing the
solution from an analogous non-stochastic differential equation. A second
approach is to simulate (a large number of sample paths of) the stochastic
process and calculate its statistical properties numerically (see next para-
graph). A third approach is to relate the solution of the SDE to the solution
of a partial differential equation (PDE) and solve the corresponding PDE (or
hope that someone else has solved it already).95

A simple Monte Carlo simulation of the solution to the SDE (13.11) on a
time interval [0, T ] follows the recipe:

1. Choose a time step ∆t.

2. Start at X0.

3. Generate a stochastic time path:

• draw ϵi ∼ N(0, 1), i.i.d., for i = 0, ..., T
∆t

and calculate

• X(i+1)∆t = Xi∆t + µ(Xi∆t, i∆t) ∆t+ σ(Xi∆t, i∆t)
√
∆t ϵi

for all i = 0, ..., T
∆t
.

4. Repeat steps 2-3 many times to estimate the distributional properties
of Xt.

For most well-behaved stochastic processes such an Euler discretization will
allow us to derive the desired statistical features of the solution. However,
recall that Section 13.3 defined the general stochastic integral by means of
the Ito isometry because the Brownian motion can behave rather ugly on
small time intervals. For many stochastic processes these extreme fluctua-
tions of the Brownian motion will “cancel out” in the numeric integration

95The existence of solutions to general SDEs is itself a somewhat tricky topic. We will
be looking for what are called strong solutions of an SDE. Strong solutions to the SDE are
solutions that are stochastic processes on the original probability space, adapted to the
filtration generated by the Brownian motion. There is a weaker solution concept referred
to as “weak solutions”, where the processes solving the SDE live on a modified probability
space.
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process performed by the above algorithm. Then, decreasing the time step
of the above algorithm, our solution, the estimated moments of our solution,
converges. However, there are stochastic processes for which this simple ap-
proach will not work and the numeric algorithm above will blow up for small
enough time steps, even if the stochastic integral implied by the SDE is well
defined.

The third, and much employed solution approach relates the solution of an
SDE to the solution of a corresponding PDE. At the heart of this solution
method lies the Feynman-Kac stochastic representation formula.

Proposition 11 (Feynman-Kac): Assume that F (t, x) is a solution to the
boundary value problem

∂F

∂t
+ µ(Xt, t)

∂F

∂x
+
σ(Xt, t)

2

∂2F

∂x2
= 0 (13.12)

F (T, x) = Φ(x).

Assume furthermore that the process

σ(τ,Xτ )
∂F

∂x
(τ,Xτ ) = 0

is in square integrable almost surely (where X is defined as below).
Then F has the representation

F (t, x) = E[Φ(XT )| F t] ,

where X satisfies the SDE

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt (13.13)

Xt = x .

The result states that the solution of the partial differential equation, F (t, x),
returns the expected value of our last period value function at time t under
the stochastic process (13.16). We note that the result has been derived orig-
inally by Feynman (for quantum mechanics) and Kac (for the heat diffusion
equation) as a reinterpretation of the PDE opening up a way to simulate
the solution to the PDE rather than vice versa. Yet, given that we know
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the solution to several PDE’s by now and that there are numeric methods
available to solve PDE’s it can be helpful to go the other way round.

The derivation of the simple Feynman-Kac formula is straight forward. We
start by rewriting Ito’s lemma in equation (13.10) for the time interval [t, T ]
as

F (ST , T ) = F (St, t) +

∫ T

t

D F (Sτ , τ)dτ +

∫ t

0

FS(Sτ , τ)στ dBτ

⇔ F (St, t) = Φ(ST )−
∫ T

t

D F (Sτ , τ)dτ −
∫ t

0

FS(Sτ , τ)στ dBτ .

Assuming that the function F solves the PDE, D F (Sτ , τ) is everywhere
zero. Moreover, if the process FS(Sτ , τ)στ is sufficiently well behaved, the
stochastic integral vanished in expectation and we find

F (St, t) = E[Φ(ST )| F t] .

The PDE (13.12) is homogenous and does not depend on F itself but only
on its derivatives. The general form of the Feynman-Kac formula includes
such dependencies.

Proposition 12 (Feynman-Kac, general): Assume that F (t, x) is a so-
lution to the boundary value problem

∂F

∂t
+ µ(Xt, t)

∂F

∂x
+
σ(Xt, t)

2

∂2F

∂x2
− r(t, x)F + g(t, x) = 0 (13.14)

F (T, x) = Φ(x).

Assume furthermore that F , g, and Φ satisfy some regularity and
growth conditions. Then F has the representation

F (t, x) = E
[
e−

∫ T
t r(τ,Xτ )dτΦ(XT ) (13.15)

+

∫ T

t

g(τ,Xτ )e
−

∫ τ
t r(s,Xs)dsdτ

∣∣∣F t

]
,

where X satisfies the SDE

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt (13.16)

Xt = x .
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In this general form, we interpret r(t, x) as a potentially time and state
dependent discount rate and g(t, x) as a continuous payoff. The solution
to the PDE (13.14) is the present discounted value of the final period pay-
off Φ(Xt) and the sum (integral) of the discounted payoff stream g(t, x).
Here, discounting takes place at a changing continuous time rate that can be
stochastic itself. If the discount rate r was constant and deterministic, the
representation in equation (13.15) simplifies to

F (t, x) = e−r(T−t)E
[
Φ(XT )

∣∣∣F t

]
+ E

[ ∫ T

t

g(τ,Xτ )e
−r(τ−t)dτ

∣∣∣F t

]
fleshing out the discounted payoff interpretation of the expression.

13.6 Stochastic Dynamic Programming

We derive the Hamilton-Jacobi Bellman equation for the case of continuous
stochastic processes governing the equations of motion or the objective func-
tion. The derivation is similar to the deterministic case. In difference to
section 11, we have to acknowledge the second order term in Ito’s formula
when expanding the value function. We assume the technical underpinnings
elaborated above, in particular, a probability space (Ω,F , P ), a standard
filtration F t capturing information available at time t, and the necessary in-
tegrability constraints on all processes. Let xt ∈ IRL be a vector of states.
A control in the stochastic framework is a, generally vector valued, adapted
process ct. We can have a controlled drift g(ct, xt) as well as a controlled dif-
fusion h(ct, xt). We say that a control ct is admissible given an initial state
x0 if there is a unique Ito process xc such that

dxct = g(ct, x
c
t) dt+ h(ct, x

c
t) dBt , (13.17)

xc0 = x0 .

Equation (13.17) is our equation of motion. We use the controls to maximize
an objective function of the form

E

∫ T

0

U(ct, x
c
t , t)dt+ F (xcT ) ,

where we assume that the expression is well defined for all admissible control
paths.
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We proceed as in the section on deterministic continuous time dynamic pro-
gramming and motivate the Hamilton-Jacobi-Bellman equation for one state
variable by taking the continuous time limit of the discrete time version.
Making the discrete time step explicit, we have

J(xt, t) = max
ct

U(xt, ct, t) ∆t+ EJ(xt+∆t, t+∆t) .

Expanding the value function on the right hand side in ∆t yields

J(xt, t) = max
ct

U(xt, ct, t) ∆t+ E
[
J(xt, t) + Jx(xt, t) ∆xt

+Jt(xt, t)∆t+
1

2
Jxx(xt, t) (∆xt)

2 + o(∆t)
]
.

Inserting ∆xt = g(ct, xt) ∆t + h(ct, xt) ∆Bt, and equating E(∆Bt)
2 = ∆t

under the expectation operator implies

0 = max
ct

U(xt, ct, t) ∆t+ E
[
Jx(xt, t)g(ct, xt) ∆t+ Jx(xt, t)h(ct, xt) ∆Bt

+Jt(xt, t)∆t+
1

2
Jxx(xt, t)h(ct, xt)

2 ∆t
]
+ o(∆t) .

Using EJx(xt, t)h(ct, xt) dBt = 0, dividing by ∆t, and letting ∆t→ 0 results
in the Hamilton-Jacobi-Bellman equation of the stochastic setting

0 = max
ct

U(xt, ct, t) +Jx(xt, t)g(ct, xt) + Jt(xt, t) (13.18)

+
1

2
Jxx(xt, t)h(ct, xt)

2 ,

where we eliminated the expected value operator as all functions are measur-
able at time t. Note that the continuous time formulation of our stochastic
dynamic programming equation replaces the expectation operator with the
“Ito or Jensen’s inequality term”.

We note that the derivatives in equation (13.18) correspond to D J(x, t)
where D is the differential operator defined in equation (13.9) and, in the
general multidimensional case,

D J(xt, t) = Jx(xt, t)gt + Jt(xt, t) +
1

2
tr
(
hth

†
tJxx(xt, t)

)
.
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Thus, we obtain the HJB in the stochastic setting by replacing the total
derivative in the deterministic setting (equation 11.1) with the operator D

0 = max
ct

U(xt, ct, t) +D J(xt, t) . (13.19)

In addition, we have the boundary condition

J(xT , T ) = F (xT ) . (13.20)

Equation (13.19) is the general form of the HJB for multidimensional stochas-
tic processes.

We can verify the optimality of a policy based on a value function solving
the HJB in a similar way as we did in section 11. Let the function J solve
the HJB (13.19) so that for any admissible (not necessarily optimal) control
paths we have

0 ≥ U(xt, ct, t) +D J(xt, t) , (13.21)

with equality for the optimal control c∗. For any given admissible control
path we find by Ito’s formula

J(xcT , T ) = J(x0, 0) +

∫ T

0

D J(xcτ , τ) dt+

∫ T

0

Jx(x
c
τ , τ)h(ct, x

c
t) dBt.(13.22)

Under the assumption that Jx(x
c
τ , τ)h(ct, x

c
t) is bounded, or some other as-

sumption sufficient to make the integral with respect to the standard Brown-
ian motion a martingale, the expectation of the last integral is zero. Adding∫ T

0
U(xct , ct, t)dt to both sides of equation (13.22), observing the boundary

condition (13.20) and inequality (13.21), and taking expected values we find

E

∫ T

0

U(xct , ct, t)dt+ F (xcT ) = J(xc0, 0)

+E

∫ T

0

D J(xcτ , τ) + U(xct , ct, t) dt

≤ J(x0, 0) ,

with equality for the optimal control process c∗ satisfying equation (13.21).
Thus, c∗ is indeed optimal and J(x, 0) denotes the maximal value of the
program.
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Finally, as in the deterministic setting, for a discounted, autonomous, infinite
horizon problem with U(xt, ct, t) = u(xt, ct) exp[−δt] we can transform the
HJB to a stationary form where the value function V (x) = J(xt, t) exp[δt]
is independent of time. Substituting the new value function into equation
(13.18) and dividing out the exponential yields

δV (x) = max
ct

u(xt, ct) + Vx(xt)g(ct, xt) +
1

2
Vxx(xt)h(ct, xt) . (13.23)

13.7 The Linear Quadratic Example under Uncertainty

As our first application of the continuous time stochastic dynamic program-
ming equation (HJB) we revisit the (simplest non-trivial) linear quadratic
example of section 11.4 and add a stochastic term to the equation of motion.
The optimization problem is

maxE

∫ ∞

0

−ay
2 + bx2

2
exp[−δt] dt s.t.(13.24)

dxt = ydt+ σx dBt ,

with x0 given, a, b > 0, and Bt being a standard Brownian motion. We note
that the stochastic equation of motion has a controlled drift and an uncon-
trolled volatility that is proportional to the stock level. The HJB equation
(13.18) is

−Jt(x, t) = max
y

−ay
2 + bx2

2
exp[−δt] + Jx(x, t)y +

1

2
Jxx(x, t)σ

2x2 ,

where the underlined second order term is new to the stochastic setting.96

In the stationary form of the HJB (equation 13.23), where we work with the
stationary value function V (x) = J(xt, t) exp[+δt], we find

δV (x) = max
y

−ay
2 + bx2

2
+ Vx(x)y +

1

2
Vxx(x)σ

2x2 .

96Instead of conveniently switching to the stationary HJB, we could as well solve

equation (13.24). The first order condition results in y = Jx(x,t)
a exp(δt). Inserting

this solution back into the HJB equation (13.24) yields the partial differential equation

−Jt(x, t) =
Jx(xt,t)

2

2 exp[δt] − bx2

2 + 1
2Jxx(x, t)σ

2x2. Seperating out a multiplicative time
dependence at this point will lead us to the ODE that we are about to derive from the
stationary HJB.
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Maximizing over y gives the same result as earlier in Section 11 because the
second order term is independent of the control y. We find

− ay + Vx(x) = 0 ⇒ y =
Vx(x)

a
. (13.26)

Reinserting the solution into the HJB equation (13.25) delivers the (inho-
mogenous) second order differential equation

δV (x) =
Vx(x)

2

2a
− bx2

2
+
Vxx(x)σ

2x2

2
. (13.27)

We note that we are back to an ordinary deterministic differential equation
without stochasticity. Had we continued with the non-stationary HJB equa-
tion (13.24) we would end up with a deterministic PDE instead (see footnote
??). We try the same form for the value function that solved the analo-
gous problem in the deterministic setting: V (x) = αx2. The trial solution
transforms equation (13.27) into the algebraic equation

δαx2 =
2α2x2

a
− bx2

2
+ ασ2x2

⇔
(
δα− 2α2

a
+
b

2
− ασ2

)
x2 = 0 ,

which is satisfied for all x whenever x = 0 or

α2 − a(δ − σ2)

2
α =

ab

4

⇔ α =
a

4

(
δ − σ2 ±

√
(δ − σ2)2 +

4b

a

)
.

Having found this solution, we also verified that the validity of functional
form of our trial solution. We can characterize the difference between the
deterministic and the stochastic solution for the value function coefficient α
by replacing the discount rate in the deterministic setting by δ → δ − σ2 in
the stochastic setting. The value function is

J(x, t) = V (x) exp[−δt] = αx2 exp[−δt]

=
a

4

(
δ − σ2 −

√
(δ − σ2)2 +

4b

a

)
x2 exp[−δt] ,
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where we picked the negative root because we know that the value function
is negative.97 Observe that the future value J(x, t) is a stochastic process
driven by the realizations of the stochastic process xt.

We obtain the optimal control in feedback form by inserting the value func-
tion derivative Vx(x) = 2αxt into the first order condition for our control,
equation (13.26)

y(x) =
Vx(x)

a
=

2αx

a
=

1

2

(
δ − σ2 −

√
(δ − σ2)2 +

4b

a

)
︸ ︷︷ ︸

≡γ

x .

We note that the control rule depends on the volatility σ. The principle of
certainty equivalence does not hold because of the multiplicative uncertainty
in the equation of motion captured by the term σxtdBt. Keeping in mind
that α < 0 we find that ∂γ

∂σ
< 0. Because γ is negative, uncertainty implies

that our control tries harder to drive the stock xt to zero under uncertainty.
The actual control path is a stochastic process because it depends on the
realization of the Brownian motion driving the stock.

We observe from equation (13.28) that the optimally controlled state xt fol-
lows the SDE

dxt = γx dt+ σx dBt , (13.28)

where γ < 0. From our applications of Ito’s lemma to the geometric Brownian
motion in Section 13.4 we know that the solution to the SDE (13.28) is the
geometric Brownian motion

xt = x0 exp
[(
γ − σ2

2

)
t+ σBt

]
.

The optimally controlled stock follows a geometric Brownian motion whose
drift presses the stock’s evolution to zero (γ < 0), but whose stochastic term
with volatility σ will continuous bounce the stock around. Note that in the
long run the damping through the drift will outweigh the bouncing Brownian
motion. The linear term in the drift outgrows the volatility of the Brownian
motion, which grows less than linearly in time.

97Note, however, that for large σ2 the expression can be negative also for the positive
root.
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13.8 Resource Extraction under Uncertainty

This subsection discusses (Pindyck 1980) classic paper on resource extrac-
tion under uncertainty. The model extends the standard resource extraction
problem with stock dependent extraction costs to a setting where demand
has a component following a geometric Brownian motion and the estimate
of available resource deposits follows a standard Brownian motion.

The market demand function is given as

p = ytf(qt) ,

where f(q) with f ′(q) < 0 is the deterministic part of the demand function
depending on the extraction flow of the resource q. The random demand
component yt follows a geometric Brownian motion98

dyt = αytdt+ σyytdB
i=1
t .

The reserves R, or rather the amount of the resource expected to exist and
to be extractable, also follow a random process given by

dRt = −qtdt+ σRdB
i=2
t .

The representative firm maximizes the objective

max
q

E

T∫
0

[ytf(qt)− C(Rt)] qt exp
−rt︸ ︷︷ ︸

≡Π(yt,Rt,t)

dt ,

where C(R) denote average production costs satisfying C ′(R) < 0. For
a competitive firm, we assume that it treats f(q) = f̄ as an exogenous
parameter in its optimization problem.

98We write dBi=1
t for first Brownian motion in order to avoid taking the index of the

second Brownian motion dBi=2
t mistakenly for a square.
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The HJB equation for the problem is99

0 = max
q

Π(yt, Rt, t) +D J(yt, Rt, t) (13.29)

= max
q

Π(yt, Rt, t) +Jt(yt, Rt, t) + JR(−qt) + Jyαyt

+
1

2
Jyyy

2
t σ

2
y +

1

2
JRRσ

2
R .

Carrying out the maximization yields

Πq(yt, Rt, t) = JR(yt, Rt, t) . (13.30)

Note that in a competitive equilibrium profits are linear in q and, thus,
equation (13.30) is not a priori valid for solving the optimization problem.
However, if Πq > JR firms would produce at maximum capacity, and if
Πq < JR firms would not produce at all. Thus, market clearing will imply
that in the equilibrium JR = Πq =

Π
q
.

Rather than plugging the latter equation into the HJB in order to obtain
the corresponding SDE, we use these two equations to eliminate the value
function and derive the Euler equation. For this purpose, we first differentiate
equation (13.29) with respect to the resource stock yielding

0 =
d

dR
Π(yt, Rt, t) +

d

dR
D J(yt, Rt, t)

= ΠR(yt, Rt, t) +D JR(yt, Rt, t) . (13.31)

Two remarks apply to this calculation. First, we assumed d
dR

D J(yt, Rt, t) =
D d

dR
J(yt, Rt, t). You can carry out the differentiations on both sides to

see that the assumption comes down to the exchangeability of the third

99In applying Ito’s formula equation (13.9) we have

dSt =

(
αyt
−qt

)
dt+

(
ytσy 0
0 σR

)
dBt

leading in particular to the term

1

2
tr
[
σtσ

†
tFSS(St, t)

]
=

1

2
tr

[(
y2t σ

2
y 0

0 σ2
R

)(
Jyy JyR
JRy JRR

)]
=

1

2
y2t σ

2
yJyy +

1

2
σ2
RJRR .
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order derivatives of the function J and, thus, an assumption of sufficient
smoothness of the value function. Second, we took a derivative with respect
to a stochastic process. On what foundation can we do so? Assume we
have two twice continuously differentiable functions F 1(x1, x2) = F 2(x1, x2),
depending on the same set of stochastic processes dx1 = µx1dt+ σx1dB

1 and
dx2 = µx2dt+σx2dB

2. Expressing the resulting processes in differential form
implies

D F 1(x1, x2)dt+ F 1
x1
σx1dB

1 + F 1
x2
σx2dB

2

= D F 2(x1, x2)dt+ F 1
x1
σx1dB

1 + F 2
x2
σx2dB

2

so that the unique decomposition property of Ito processes implies F 1
x1

= F 2
x1

and F 1
x2

= F 2
x2
.

The second step on our way to the Euler equation proceeds in differentiating
equation (13.30) by D, again relying on the unique decomposition property
and comparing the deterministic parts, yielding

DΠq(yt, Rt, t) = D JR(yt, Rt, t) . (13.32)

Combining equations (13.31) and (13.32) we obtain

DΠq(yt, Rt, t) = −ΠR(yt, Rt, t) (13.33)

⇒
∫ T

t

DΠq(yt, Rt, t)dt = −
∫ T

t

ΠR(yt, Rt, t)dt

⇒ Πq(yT , RT , T )︸ ︷︷ ︸
=0(terminal condition)

−Πq(yt, Rt, t)−
∫ T

t

ΠqyytσydB
i=1
t

−
∫ T

t

ΠqRσRdB
i=2
t = −

∫ T

t

ΠR(yt, Rt, t)dt

⇒ Πq(yt, Rt, t) =

∫ T

t

ΠR(yt, Rt, t) dt (13.34)

−
∫ T

t

Πqyytσy dB
i=1
t −

∫ T

t

ΠqRσR dBi=2
t
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Taking expectations in equation (13.34) returns

Πq(yt, Rt, t) = E

∫ T

t

ΠR(yt, Rt, t) dt . (13.35)

Equation (13.35) tells us that the increase in profits from selling one more
unit should equal the expected sum of the discounted future increase in profit
that would result from holding that unit in the ground (thereby reducing
extraction cost).100

Returning to the stochastic equation (13.34), and evaluating it at time t,
the marginal profits on the left hand side of the equation are known. But
what about the stochastic terms on the right hand side? The Brownian
motions determine the stochastic adapted process ΠR in the first integrand
on the right hand side. Indeed, the profits from keeping one more unit in
the ground depend on how the reserves and the demand evolve over time.
Writing the equation in differential form yields101

dΠq(yt, Rt, t) = −ΠR(yt, Rt, t)dt+Πqyytσy dB
i=1
t +ΠqRσR dBi=2

t .(13.36)

While in equation (13.34) the point in time t at which we evaluated marginal
profits was fix, in equation (13.36) we have evaluation time evolve. Then we
see that the marginal profits from selling a unit of the resource fluctuate with
the volatility of demand and the updates of the reserve estimates.

We can further calculate the precise form of the Euler equation by further
evaluating the profit function. Let us do this for the example of a competitive
equilibrium. Here profits are linear in q and JR = Πq = Π

q
. Then, dividing

by the exponential, equation (13.33) becomes

−r[f(qt)yt − C(Rt)]− C ′(Rt)(−q)−
1

2
C ′′

t (Rt)σ
2
R + f(qt)αyt = qC ′(Rt)

Setting pt = ytf(qt) implying d
dt
Ept = f(qt)αyt delivers

d

dt
Ept = r[p− C(Rt)] +

1

2
C ′′(Rt)σ

2
R . (13.37)

100And selling it in the last period where by assumption the marginal profits are zero
(terminal condition).
101Write dP iq in differential form using the Ito formula and equation (13.33).
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Equation (13.37) is the Hotelling rule for the price of the resource extended
to the stochastic setting. It holds for the expected price change. The new
term 1

2
C ′′(Rt)σ

2
R stems from the fact that high realizations of the random

variable increase the production costs more than low realizations reduce the
costs. The term accelerates the price increase for convex costs. Interestingly,
for extraction costs that only depend linearly on the resource stock, the
expected price change (conditional on the current reserve estimate) is the
same as in a certain world. Moreover, demand uncertainty has no influence
on the expected price path. We refer to Pindyck (1980) for exploring how
uncertainty has an ambiguous effect on the expected extraction rate, which
does depend on second order terms of the demand function.



13.9 Appendix 332

13.9 Appendix

The appendix provides more insight into the technicalities surrounding Brow-
nian motion and stochastic integration. Our approach is heuristic.

13.9.1 More on Brownian Motion

We briefly point out what it means that the quadratic variation of any
continuously differentiable function vanishes, whereas the quadratic varia-
tion of a Brownian motion is positive. In consequence, the absolute vari-
ation of a Brownian motion diverges and a Brownian motion is not con-
tinuously differentiable on any finite time interval. Define a sequence of
partitions of the interval [a, b] by a = tn0 < tn1 < tn2 < ... < tnn = b with
max{|tnk+1 − tnk |, k = 1, 2, ..., n − 1} → 0 for n → ∞. Let f ∈ C1([a, b]) be
a continuously differentiable function on the interval [a, b] and let B be a
Brownian motion on the same interval.

1. The quadratic variation of f vanishes:

n−1∑
k=0

[
f(tnk+1)− f(tnk)

]2 → 0 for n→ ∞

2. The quadratic variation of B is b− a:

n−1∑
k=0

[
Btnk+1

−Btnk

]2
→ b− a for n→ ∞

3. The total variation of f is finite:

sup
all partitions

n−1∑
k=0

∣∣f(tnk+1)− f(tnk)
∣∣ = ∫ b

a

|f ′(x)| dx

4. The total variation of B diverges:

sup
all partitions

n−1∑
k=0

∣∣∣Btnk+1
−Btnk

∣∣∣ = ∞ almost surely (13.38)
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Given results 3 and 4 we know that a Brownian motion is not continuously
differentiable on any interval [a, b] ⊂ IR+. In fact, it can be shown that every
path of a Brownian is almost surely nowhere differentiable.

13.9.2 Stochastic Integration

Recall how we usually define an integral. We start with a definition for
a class of basic functions like step function (Rieman integral) or primitive
functions (Lebesgue integral, measure integral). Then, we show that we can
approximate a more general class of functions by sequences of these primitive
functions, and we define the limit of the corresponding sequence of integrals
of the approximating functions to be the integral of the function itself. The
same procedure is used to define the stochastic integral. It is straight forward
to define the integral for simple functions of the form

f(t) =
n−1∑
k=0

ck 1[tk,tk+1)(t) , (13.39)

where 1[s,t)(t) is an indicator function that is unity for t ∈ [s, t) and zero
everywhere else. Then we define the so called Wiener-integral of f by∫ b

a

f(t) dBt ≡
n−1∑
k=0

ck
(
Btk+1

−Btk

)
. (13.40)

For a standard integral we could approximate general function by a sequence
of the primitive functions and define the integral by limit. However, equation
(13.38), i.e. the infinite total variation of a Brownian motion, should make
us cautious with respect to simply taking a limit in an equation of the form
(13.40). Instead, the general definition of a Wiener and a stochastic integral
makes use of the Ito-isometry, which states that for any function f of the
form (13.39) holds

E

(∫ b

a

f(t) dBt

)2

=

∫ b

a

|f(t)|2 dt .

This isometry is used to extended the definition of the integral to the space
of square-integrable functions f ∈ L2. In a further step, the Wiener integral
is extended to the stochastic integral by allowing the integrand f to be a
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stochastic process itself. For this purpose, let F define the filtration gener-
ated by the Brownian motion and let f be an F−adapted square integrable
process. The same isometry as above is used to extend the definition of the
integral from the simple functions of the form (13.39) with random coeffi-
cients cj to the set of all stochastic processes that are square integrable in
expectation.

13.10 Problems

Exercise 7 Solve the following linear quadratic optimal control problem.

max

∫ ∞

0

−ay
2 + bx2

2
exp[−δt] dt s.t. dxt = ydt+ σ dBt ,

x0 given, a, b > 0, and Bt a standard Brownian motion.

a) Write down the regular as well as the stationary HJB equation. How do
they differ from the analogous problem under certainty? How do they
differ from the problem discussed in the chapter on stochastic control?

b) Solve the problem, deriving the value function, the optimal control rule,
and the equation for the optimally controlled stock. Explain your steps
and discuss the resulting equations. Does the principle of certainty
equivalence hold? Compare this result to the findings in the chapter on
discrete time stochastic control and explain possible differences.

c) Solve the stochastic differential equation describing the equation of mo-
tion of the optimally controlled stock.
Procedure: “Guess” that the solution is of the form

Xt = α(t)

(
X0 +

∫ t

0

β(τ)dBτ

)
.

Take the total differential. You do not need much of Ito’s formula
because the Brownian motion is already under the integral. The total
change of the integral at time t is merely the β(τ)dBτ evaluated at
time t. Bring the result to a form that you can compare to the actual
controlled equation of motion for the stock St. Match coefficients, which
might involve solving a simple differential equation.
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d) Calculate future expected values of the stock and its variance.
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14 Discounting

Consumption today is not directly comparable with consumption at a dif-
ferent point in time. The discount factor for consumption enables us to
compare consumption at different points in time. Discounting is an espe-
cially important element of environmental problems that involve trade-offs
in consumption across widely different times. Climate policy is the leading
example of this kind of trade-off, because decisions taken in the near future
may have major effects on welfare in the distant future.

14.1 The social discount rate

Discount rates are defined as the rate of decrease (the negative of the rate of
change) of the discount factor. It is important at the outset to distinguish
between discount rates and factors for utility and for consumption. We define
βt as the number of units of utility (utils) that we would give up today in
order to obtain one more util at time t. It is the discount factor for utility.
By definition, β0 = 1. We define the discount rate for utility at time t as102

ρt = − β̇t
βt
,

where the dot denotes the (total) time derivative. The utility discount rate
ρt is also known as the rate of pure time preference (RPTP). The RPTP is
a measure of impatience, with larger values implying greater impatience. If
ρt = ρ is a constant, utility discounting is exponential: βt = e−ρt.

We begin by defining the discount factor and the corresponding discount
rate for consumption in the simplest case: there is a single consumption
good, c; there is no uncertainty; and welfare, W , equals the present value
of the infinite stream of utility, u (c). In this case, W =

∫∞
0
βt u (ct) dt.

The consumption discount factor for time t equals the number of units of
consumption we would surrender during a small interval, ε, beginning today
in order to obtain one more unit of consumption during a small interval, ε,
beginning at time t. If, prior to the transfer, consumption today is c0 and
consumption at time t is ct, the welfare loss due to giving up Γ units of

102Here we define the instantaneous discount rate. Another frequent definition of discount
rates is as an average rate defined by 1

t lnβt.
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consumption today is approximately u′ (c0) Γε and the welfare gain of one
unit of consumption at time t is βt u

′ (ct) ε. We are willing to make this
sacrifice if these two quantities are equal, i.e. if

Γt = βt
u′ (ct)

u′ (c0)
. (14.1)

The rate of decrease of Γ is the discount rate for consumption. This rate is
more conveniently expressed in terms of the growth rate of consumption g
and the consumption elasticity of marginal utility η, which is equal to the
inverse of the elasticity of intertemporal substitution. These are defined as

gt =
ċt
ct

and η(ct) = −u
′′ (ct)

u′ (ct)
ct.

Then, equation (14.1) gives rise to the consumption discount rate

rt = − Γ̇t

Γt

= ρt + η (ct) gt. (14.2)

Equation (14.2) is usually referred to at the Ramsey equation. More precisely,
the actual Ramsey equation is an equilibrium condition in the Ramsey-Cass-
Koopmans growth model stating that the right hand side of equation (14.2)
has to equal the interest rate (or capital productivity) in the economy. In con-
trast, the derivation of the consumption discount rate rt in equation (14.2) is
independent of the market equilibrium. In the context of public project eval-
uation, the consumption discount rate rt is referred to as the social discount
rate (SDR).

A larger SDR means that we are willing to sacrifice fewer units of consump-
tion today in order to obtain an additional unit of consumption t periods
in the future. In the context of climate policy, a larger SDR means that
we are willing to spend less today, e.g. through increased abatement or in-
vestment in low-carbon technology, to prevent future climate damage. A
larger value of the RPTP, ρ, means that we place less value on future util-
ity. A higher growth rate means that future consumption is higher; under
the assumption of decreasing marginal utility of consumption the higher g
lowers future marginal utility. A larger elasticity of marginal utility implies
a faster decrease of marginal utility with consumption growth. Therefore,
under positive growth, larger values of ρ, g, or η all imply a higher SDR, and
less concern for the future.
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Some applications assume: (i) isoelastic utility u (c) = c1−η

1−η
, so that η is con-

stant; (ii) a constant growth rate, so that g is constant; and (iii) exponential
discounting of utility, so ρ is constant. In this case, the SDR is also constant.
More generally, one or more of the three components of rt might depend on
time. While gt or η(ct) will quite commonly depend on time because of the
dynamics in the economy, a time dependence of pure time preference would
be exogenously imposed as a direct preference specification. As we discuss
in section 14.6.2 such a time dependence of pure time preference can lead to
time inconsistent choices.

14.2 The SDR and environmental policy

The social discount rate is used to evaluate legislation and public projects.
In application, the employed values vary widely over countries and agencies.
While the majority adopts a constant rate, the U.K. and France adopt time
dependent discounting schemes. The social discount rate is important in
evaluating environmental policy when the timing of costs and benefits dif-
fer, as with climate change policy where current decisions have long-lasting
effects. We use the latter as an example to illustrate the policy relevance
of the social discount rate. The Stern (2007) Review of Climate Policy uses
a negligible RPTP of ρ = 0.1%, a growth rate of g = 1.3%, and the value
η = 1, implying r = 1.4%. In contrast, Nordhaus (2008) employs a RPTP of
ρ = 1.5% and the value η = 2 in a model with an approximate consumption
growth rate of g = 1.5%, implying r = 5.5%. The ratio of what we are willing
to spend today, to avoid a dollar of damage 100 years from now, under these
two sets of parameters is

ΓStern
100

ΓNord
100

=
e−.014·100

e−.055·100 ≈ 60.

For this example, the higher SDR decreases our willingness to spend today
to avoid damages a century from now by a factor of 60. Nordhaus (2007)
shows that this difference in social discounting can explain almost entirely
the differences in policy recommendation between his integrated assessment
of climate change based on DICE-2007 and that of the Stern Review: running
DICE with a 1.4% SDR instead of 5.5% increases the near term social cost
of carbon by a factor of 10 and almost quadrupels the near term optimal
abatement rate with respect to business as usual.
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14.3 The positive and the normative perspective

The different choices of the social discount rate in (Nordhaus 2008) and
(Stern 2007) assessment of climate change stem from different perspectives
on the application of social discounting in policy evaluation. Nordhaus takes
a positive approach to social discounting, while Stern takes a normative ap-
proach. The positive approach relies on measurements of the constituents
of the social discount rate, while the normative approach choses these pa-
rameters on ethical grounds. The measurement of the social discount rate is
complicated by the fact that markets exhibit externalities, are incomplete,
and, therefore, do not necessarily reflect the agents’ intertemporal preferences
correctly.

In principle, there are two different approaches to determine the social dis-
count rate as reflected on the market. First, we can measure ρ and η based
on a sufficiently large set of observations. We then combine these estimates
with an exogenous consumption growth scenario, or use them in an evalu-
ation model where growth is determined endogenously, as in the integrated
assessment of climate change. Second, we can measure the interest rate in the
economy. Then, the original derivation of the Ramsey (1928) equation (14.2)
states that in equilibrium this interest rate is equivalent to the consumption
discount rate. This second method is particularly prone to picking up mar-
ket imperfections like transaction costs or distortions in the intertemporal
consumption-investment trade-off. These market imperfections also result in
a wide spectrum of different interest rates observable on the market. Usually,
interest rate based approaches to measuring the social discount rate rely on
the interest paid on government bonds. These provide an opportunity cost
measure for a dollar spent on public projects. The maturity of government
bonds limits how far into the future we can measure this opportunity cost;
in the U.S. it is currently given by the 30-year treasury bond.

The Stern (2007) Review argues that intergenerational trade-offs encompass-
ing many generations cannot be judged merely on the basis of market ob-
servations. Society has to employ ethical reasoning in order to represent
those generations that are not currently alive and, hence, not reflected on
the market. The sequence of economists who argued that ethical reasoning
imposes a zero RPTP is long and includes Ramsey (1928), Pigou (1932),
Harrod (1948), Koopmans (1963), Solow (1974), Broome (1992). While the
Stern Review’s choice of a close to zero RPTP is based on intergenerational
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equity concern, it simultaneously adopts a comparatively low value for the
propensity to smooth consumption over time η, implying a rather low prefer-
ences for intergenerational consumption smoothing. Traeger (2007) presents
a different normative argument for a zero RPTP based entirely on rational-
ity constraints for decision making under uncertainty, rather than on ethical
arguments. Schneider, Traeger & Winkler (2012) extend equation (14.2) to
account for overlapping generations. They reveal strong normative assump-
tions underlying the positive approach and show that the usual arguments
of the normative approach are complicated by an equity trade-off between
generations alive at the same point in time versus equity over generations
across time.
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14.4 Discounting under Uncertainty

The social discount rate relies on future consumption growth, which is uncer-
tain. Within the standard model, only strongly serially correlated or catas-
trophic risk have a serious impact on the discount rate. We briefly discuss
two extensions that incorporate general risk aversion and ambiguity aversion
into the social discount rate, showing that these can have a major impact
on the discount rate. We close the section commenting on (Weitzman 2009)
Dismal Theorem and the Weitzman-Gollier puzzle.

14.5 Stochastic Ramsey equation

The social discount rate under uncertainty is generally defined using a cer-
tain consumption trade-off as in section 14.1 shifting consumption into an
uncertain future. Then, the resulting consumption discount factor Γt cap-
tures the present value of a certain consumption unit in an uncertain future.
As a consequence, the right hand side of equation (14.1), defining Γt, gains
an expected value operator expressing that marginal utility gained from an
additional future consumption unit is uncertain. For the subsequent analy-
sis, we assume two periods, isoelastic preferences u(c) = c1−η

1−η
, and a normal

distribution of the growth rate g̃ = c̃1/c0 with expected growth rate µ and
standard deviation σ. Then the consumption discount rate is

r = δ + ηµ− η2
σ2

2
. (14.3)

The contributions of time preference and of expected growth coincide with
the corresponding terms under certainty in equation (14.2). The third term
−η2 σ2

2
results from consumption growth risk and decreases the social dis-

count rate, increasing the present value of a certain consumption unit in the
future. It is proportional to the growth variance σ2 and the square of the
consumption elasticity of marginal utility η. In the current context, η is
frequently interpreted as a measure of risk aversion. However, it still is the
measure of aversion to intertemporal substitution and section 14.5.1 explores
a model incorporating general risk attitude.

We can interpret the timing in our setting in two different ways. First, the
time between the first and the second period can be one year. Then, δ, µ, and
σ will generally be in the order of percent. For example, Kocherlakota (1996)
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estimates µ = 1.8 and σ = 3.6 for almost a century of U.S. consumption data.
Then, the risk term in equation (14.3) will be an order of magnitude smaller
than the other terms: for η = 2 (η = 1) the growth contribution is ηµ = 3.6%
(1.8%) while the risk contribution is 0.5% (0.1%). Under the assumption of
an iid growth process, equation (14.3) captures the constant, annual social
discount rate.

Second, we can interpret period 0 as the investment time of a project, and
period 1 as the payoff period. Assuming a constant annual expected growth
rate, the two first terms on the right hand side of equation (14.3) increase
linearly in time. Dividing the equation by the time span t between investment
and payoff yields the average annual consumption discount rate. The first
two contributions to this average rate are just as in (14.3), while the risk term
becomes −η2 σ2

2t
. For a random walk of the growth rate, the variance grows

linearly in time, confirming the result that an iid growth process implies a
constant annual discount rate. However, under serial correlation the variance
increases more than linearly in time and the risk term increases the further
the payoff lies in the future. Then, long term payoffs are discounted at a
lower discount rate then short term payoffs: the term structure of the social
discount rate decreases. Due to this finding, France and the U.K. adopted
falling discounting schemes for project evaluation. We discuss the case of
perfect serial correlation in more detail in section 14.5.4

14.5.1 General risk attitude

Equation (14.3) is based on the intertemporally additive expected utility
model. In this model, the consumption elasticity of marginal utility has
to capture two distinct preference characteristics: the propensity to smooth
consumption over time and risk aversion. Positively, these two attitudes dif-
fer. Also normatively, there is no reason that the two should coincide.103

In general, risk affects economic evaluation in two different ways. First, a
stochastic process generates wiggles in the consumption paths. Agents dis-

103It is a widespread misunderstanding that (von Neumann & Morgenstern 1944) ax-
ioms, underlying the expected utility model, together with additive separability on certain
consumption paths, underlying the discounted utility model, would imply the discounted
expected utility model. Merging these two assumptions results in a more general evalua-
tion framework that distinguishes risk attitude from the propensity to smooth consumption
over time (Traeger 2010a).
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like these wiggles if they have a propensity to smooth consumption over time.
Second, agents dislike risk merely because it makes them uncertain about the
future. This is an intrinsic aversion to risk that is not captured in the in-
tertemporally expected utility standard model. The finance literature has
successfully exploited general risk attitude to explain various asset pricing
puzzles. In the context of determining the social discount rate, the most im-
portant puzzles solved are the equity premium and the risk free rate puzzles.
Resolving these puzzles requires a model that gets the risk free rate right and
explains the premium paid on risky equity. In a positive approach, where we
measure preferences or interest rates based on market observations, it is im-
portant to use a model that gets these rates right. In a normative approach,
the model forces the decision maker to think about both risk aversion and
intertemporal (or intergenerational) consumption smoothing.

We keep the assumptions of a normal distribution of the growth rate and
of isoelastic preferences, now with respect to both: consumption smoothing
over risk and over time. Calling the measure of intrinsic risk aversion RIRA
for relative intertemporal risk aversion, Traeger (2008) derives the social
discount rate

r = δ + ηµ− η2
σ2

2
− RIRA

∣∣1− η2
∣∣ σ2

2
. (14.4)

Here, the parameter η only expresses the propensity to smooth consumption
over time. The second term on the right hand side captures the growth
effect, while the third term captures the dislike of the agent for the wiggles
in the consumption path generated by a stochastic process. The new term is
proportional to the measure of intrinsic risk aversion, which is not captured
in the standard model, and further reduces the discount rate. Increasing risk
aversion (in the Arrow-Pratt as well as in the intrinsic sense) reduces the
discount rate. In contrast, increasing η generally increases the discount rate.
Disentangled estimates and calibrations in the asset pricing context result
commonly in η = 2/3 and RRA ∈ [8, 10] (Vissing-Jørgensen & Attanasio
2003, Basal & Yaron 2004, Basal, Kiku & Yaron 2010). Picking RRA = 9
yields a coefficient of relative intertemporal risk aversion of RIRA = 25 and

a discounting effect of intrinsic risk aversion that is RIRA |1−η2|σ2

2 /η2 σ2

2
≈ 31

times larger than the effect created by aversion to consumption wiggles. In
our numerical example with µ = 1.8% and a standard deviation of σ = 3.8%
the growth effect reduces to ηµ = 1.2%, the standard risk to 0.03%, and the
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effect of intrinsic risk aversion equals 0.9%. Then, the social discount rate
becomes ρ+0.3% and reduces almost to pure time preference, which the cited
calibrations generally find to be close to zero as well. See Traeger (2008) for a
sensitivity analysis and Gollier (2002) for a different treatment of discounting
in the case of general risk attitude. Note that equations (14.3) and (14.4)
hold not just for certain project payoffs, but also in the case where the project
payoff is independent of baseline uncertainty. Traeger (2008) discusses the
case of correlation between project payoff and baseline uncertainty.

14.5.2 General uncertainty attitude

In general, decision makers do not know the probability distributions gov-
erning the future with certainty. Situations whether the decision maker does
not know the underlying probabilities are known as situations of ambigu-
ity, hard uncertainty, or deep uncertainty (as opposed to risk). Klibanoff,
Marinacci & Mukerji (2005) and Klibanoff, Marinacci & Mukerji (2009) de-
velop a convenient model of decision making under ambiguity known as the
smooth ambiguity model. It is similar to a standard Bayesian model, but
distinguishes the attitude with respect to known probabilities (risk) from
the attitude with respect to unknown probabilities (ambiguity), which are
identified with the Bayesian prior. Traeger (2010b) generalizes the model
and establishes its normative foundation: acknowledging the existence of
different types of uncertainty, risk aversion measures depend on the type of
uncertainty a decision maker faces, even within a framework based on the
von Neumann & Morgenstern (1944) axioms. The smooth ambiguity model
corresponds to the special case where risk attitude coincides with the atti-
tude for consumption smoothing, but differs from the attitude to ambiguity.
The measure of ambiguity aversion is similar to that of intertemporal risk
aversion; we denote the coefficient of relative ambiguity aversion by RAA.
We assume once more isoelastic preferences and normal growth. However,
this time the expected value µ∗ of the normal distribution is unknown. Given
a particular value µ∗, the standard deviation is once more denoted σ. The
expected growth rate µ∗ is governed by a normal distribution with expected
value µ and standard deviation τ . Traeger (2008) calculates the resulting
extension of the Ramsey equation as

r = δ + ηµ− η2
σ2 + τ 2

2
− RAA

∣∣1− η2
∣∣ τ 2
2
. (14.5)
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The formula resembles equation (14.4) for intertemporal risk aversion. The
difference are, first, that in the Bayesian model the overall uncertainty cre-
ating consumption wiggles is captured by the sum of the variance of both
normal distributions. Second, intrinsic uncertainty aversion only affects sec-
ond order uncertainty captured by τ . Extending the model to disentangle
risk aversion from both ambiguity aversion and the propensity to smooth con-
sumption over time, implies that the Ramsey equation collects both terms,
those proportional to intertemporal risk aversion in equation (14.4) and that
proportional to ambiguity aversion in equation (14.5) (Traeger 2008). In the
case of isoelastic preferences, intrinsic uncertainty aversion in the sense of
intertemporal risk aversion and smooth ambiguity aversion always reduces
the social discount rate. Gierlinger & Gollier (2008) and Traeger (2011a) es-
tablish general conditions under which general uncertainty lowers the social
discount rate. The latter paper also shows how a decrease in confidence in
the futurity of the growth forecast can lead to a falling term structure.

14.5.3 Catastrophic risk

Weitzman (2009) develops an argument that catastrophes would swamp the
importance of discounting. In a Bayesian decision model with isoelastic pref-
erences he assumes that the stochastic process governing growth is unknown.
In contrast to the analysis in sections 14.5.1 and 14.5.2, Weitzman does not
incorporate general risk or uncertainty attitude. Instead of assuming a nor-
mal prior on expected growth, Weitzman puts an uninformative prior on
the variance of the growth process. He shows that the resulting overall un-
certainty is sufficiently fat tailed to imply an infinite consumption discount
factor, implying an infinite weight on future consumption. Weitzman calls
this result a Dismal Theorem. A simplified perspective on his result, ne-
glecting the precise model of uncertainty and learning in Weitzman (2009),
is that inserting enough uncertainty into the model implies that as τ → ∞
in equation (14.5) the discount rate goes to minus infinity. In utility terms,
the intuition for Weitzman’s result is that his model exhibits a sufficiently
slow decline of the probability mass characterizing that future consumption
approaches zero and marginal utility infinity.104 Weitzman makes the point

104It might be useful to step back from elaborate economic welfare representations. In
terms of preferences Weitzman’s model contains a zero consumption state and, probabilis-
tically, a lottery that is to be avoided by all means. Weitzman shows that the willingness to
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that, even if we bound marginal utility away from minus infinity, the discount
factor would be highly sensitive to the precise bound.

The social discount rate here and in Weitzman’s calculation gives the value
of a certain marginal consumption unit shifted into the future. Weitzman
constructed an immensely uncertain future and then calculates the value of
handing the future agents the first certain unit. If such a certain transfer
mechanism would be available, this transfer should happen. With the first
unit transferred infinity goes away and we can calculate the optimal amount
that should be transferred into the future. The discount rate is like a price. If
we offer an agent dying of thirst in the desert the first sip of water, he would
likely give up all his worldly belongings in exchange. However, this measure-
ment would not generally give us the market value of water. If, in contrast,
uncertainty is insuperable, then we cannot simply calculate the social dis-
count rate based on a certain consumption transfer, but have to account
for uncertainty in the transfer and its correlation to baseline uncertainty
(Traeger 2008). The empirical plausibility of the magnitude of uncertainty
that Weitzman (2009) assumes is also questionable in the climate context in
which it is motivated. See Millner (2011) for a discussion and extension of
Weitzman’s model.

14.5.4 The Weitzman-Gollier puzzle

Weitzman (1998, 2001) and Gollier (2004) analyze the social discount rate
in the presence of uncertainty about future economic productivity. Both
authors assume perfectly serially correlated interest rates. Weitzman de-
rives a falling term structure and Gollier derives an increasing term structure
from assumptions that are apparently the same same. This finding is known
as the Weitzman-Gollier puzzle. Two insights help to resolve the puzzle.
First, the original papers on the puzzle did not take into consideration the
change of marginal utility over time and risk states (Gollier 2009, Gollier
& Weitzman 2010, Freeman 2010). Second, Gollier’s reasoning is concerned
with the uncertain payoff of an investment project, while Weitzman’s reason-
ing gets at growth uncertainty changing baseline consumption in the future.
Gollier asks for the following certainty equivalent discount rate: what average

pay to get rid of this state are ‘all means’. Note that the expected utility model with isoe-
lastic utility does not satisfy the usual choice axioms when including the zero consumption
level.
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annual productivity must a certain project have in order to match expected
annual productivity of the uncertain project? The term structure of this rate
generally increases: the payoffs of the uncertain project grow exponentially
over time under full serial correlation, and the highest interest rate scenario
dominates the (linear) expected value. In contrast, Weitzman’s suggested
rate is in the spirit of equation (14.3), which implies a falling term structure
under serial correlation.105 If the payoff uncertainty of the project under
evaluation is independent of the market interest, then the value of the uncer-
tain project increases over time with respect to a certain project as Gollier’s
discount rate implies. Both the certain and the uncertain project increase
in value over time in a world of serially correlated uncertainty, relative to a
world of certainty, as reflected by Weitzman’s decreasing discount rate. In
the case where project payoff and market interest are perfectly correlated the
effect pointed out by Gollier vanishes. Then, the exponential payoff growth
emphasizing the high payoff states is offset by the simultaneous decrease of
the marginal utility obtained from an additional consumption unit, because
the realization of the project payoff simultaneously determines the total con-
sumption growth in the economy.

105Weitzman (1998,2001) argues only by means of productivity in the economy. However,
a close examination of his argument shows that the relation between consumption growth
and productivity growth makes his formula almost correct Gollier & Weitzman (2010). It
is only almost correct because it overlooks that the consumption share generally responds
to the resolution of uncertainty over the market interest (Freeman 2010, Traeger 2012).
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14.6 Discounting: Extensions

This section surveys some important extensions of the Ramsey formula. We
start by relaxing the assumption of an aggregate consumption good, and an-
alyze how limited substitutability between environmental services and pro-
duced consumption affects the discount rate. We then discuss the case of
hyperbolic discounting as triggered by a non-constant RPTR. Finally, we ex-
plain that the explicit treatment of overlapping generations generally leads
to a model equivalent to that of non-constant RPTP.

14.6.1 Environmental versus produced consumption

Above we assumed the existence of an aggregate consumption commodity.
This assumption becomes crucial if different classes of goods are not perfect
substitutes. In particular, produced consumption is likely to be an imperfect
substitute for environmental goods and services. Moreover, the provision
and consumption of environmental goods and services does not generally
grow at the rate of technological progress. Then, as our economy grows,
environmental goods and services become relatively more valuable over time.
We can incorporate this effect into a cost benefit analysis by introducing
a time dependent conversion factor that translates the costs and benefits
in terms of environmental good into current value produced consumption
units. Alternatively, we can price environmental and produced consumption
by present value prices and apply good-specific discount rates for cost benefit
analysis. In both approaches, the underlying discount rate is affected by
imperfect substitutability.

We assume that a representative agent derives utility u(ct, et)e
−ρt from con-

suming produced goods ct and environmental consumption and services et.
We define the discount factor of the consumption good as above and the dis-
count factor for the environmental good as the amount of the environmental
good that an agent is willing to give up in the present in order to receive an
additional unit of the environmental good in the future. This rate is known
as the ecological discount rate.106 The discount rate characterizing the rate

106This rate indicates how the value of a unit of the environmental good changes over
time. If we are concerned how much of a consumption unit in the present an agent should
give up for a future unit of environmental services, then we simply have to multiply the
corresponding ecological discount factor with the relative price of the two goods in the
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of change of the discount factor for consumption becomes

δc(t) = ρ+ ηcc(t) ĉ(t) + ηce(t) ê(t) (14.6)

with ĉ(t) = ċt/ct, ηcc(t) = ηcc(ct, et) = − ∂2u
∂c2

c/∂u
∂c

and ηce = ηce(ct, et) =

− ∂2u
∂c∂e

e/∂u
∂c
. Unless both goods are perfect substitutes (ηce = 0), the con-

sumption discount rate for produced consumption depends both, the growth
of produced consumption and on environmental growth (or decline).

Assuming Cobb-Douglas utility u(ct, et) = cact e
ae
t (where ac + ae = 1) elimi-

nates the overall growth effect because Cobb-Douglas utility is linear homo-
geneous. We use this function form to focus on the effect of growth differences
between produced and environmental consumption. Then, the consumption
discount rate for the produced good (14.6) simplifies to

δc(t) = ρ+ ae(ĉt − êt) .

Relatively faster growth in produced consumption increases the produced
consumption discount rate. Similarly, this faster growth of produced con-
sumption reduces the discount rate for the environmental goods and services:

δe(t) = ρ− ac(ĉt − êt) .

Thus, if produced consumption grows more rapidly than consumption of envi-
ronmental goods, the discount rate to be applied in a cost benefit analysis for
environmental good preservation is lower than the discount rate for produced
consumption. This adjustment of the social discount rate for the environ-
mental good reflects an increase in the relative scarcity of the environmental
good causing its (relative) price to increase. For constant growth rates, both
social discount rates are constant. However, this is a consequence of the unit
elasticity of substitution between environmental and produced consumption.
In general, these good-specific discount rates change over time. Both the
discount rate for produced consumption as well as the discount rate for envi-
ronmental goods and services can fall over time as a consequence of limited
substitutability (Hoel & Sterner 2007, Traeger 2011b).

present.
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14.6.2 Hyperbolic discounting

Many models of dynamic public policy involve non-constant social discount
rates. The nature of the resulting policy problem depends on whether this
non-constancy causes time inconsistency. Time inconsistent policies can im-
ply an ongoing revision of the formerly optimal policy, even in the absence
of new information. In contrast, a declining term structure caused by falling
growth rates, serially correlated uncertainty, or limited between-good substi-
tutability leads to time consistent plans. Here we analyze the most common
model giving rise to non-constant discount rates that cause time inconsistent
plans: models employing a non-constant RPTP.

Ramsey (1928) noted “. . .My picture of the world is drawn in perspective. . . I
apply my perspective not merely to space but also to time.” The obvious
meaning of “perspective applied to time” is that events in the more distant
future carry less weight today, just as objects in the distance appear smaller.
Any positive discount rate, including constant discounting, creates this type
of perspective applied to time. However, perspective means more than the
apparent shrinking of distant objects. The simplest model of perspective
applied to space, known as “one point perspective”, can be visualized as
the appearance of railroad tracks viewed straight on, so that the two rails
appear to converge at the horizon. The distance between adjacent railroad
ties appears to grow smaller the more distant are the ties, but the rate of
change appears to fall (Karp 2009). This kind of perspective means that
not only do distant objects appear smaller, but also that we are less able to
distinguish between the relative size of two objects, the further they are from
us. Hyperbolic discounting, which assumes that the discount rate falls over
time, is the time analog of this spatial perspective.

Hyperbolic discounting arises in both behavioral models of individual de-
cision problems (Laibson 1997) and in long-lived environmental problems
(Cropper, Ayded & Portney 1994). In the former setting, individuals’ ten-
dency to procrastinate is a prominent rationale for hyperbolic discounting.
The rationale in the environmental setting is more closely tied to the fact that
the problem of interest (e.g. climate change) occurs on a multi-generation
scale. If we care less about our grandchildren than we do about our children,
and care still less about generations that are more distant from us, our pref-
erences are consistent with a positive discount rate on the generational time
scale. If, in addition, we make less of a distinction between two contiguous
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generations in the distant future compared to two generations close to us, our
pure rate of time preference is hyperbolic. We might have a preference for
our children relative to our grandchildren but scarcely distinguish between
those born in the 20’th and the 21’st generation from ours. If individuals
have this kind of time perspective and if the social planner aggregates the
preferences of agents currently alive, then the social planner has hyperbolic
discounting.

Non-constant discounting arising from preferences, as described above, causes
optimal programs to be time inconsistent. That is, at any point in time the
current social planner would like to deviate from the plan that was optimal
for an earlier social planner. The time inconsistency is easiest to see using
a discrete time example of the “β, δ model”, where the sequence of discount
factors used at t to weigh payoffs at times τ ≥ t is 1, β, βδ, βδ2, βδ3.... If
β = δ the discount factor is constant, and discounting is exponential. If
β < δ, discounting is “quasi-hyperbolic”. Consider a project that reduces
time t+1 utility by β+δ

2
units and increases t+2 utility by 1 unit, and suppose

β < δ. A planner at time t would accept this project, because the present
value of the utility loss, β β+δ

2
, is less than the present value of the utility

gain, βδ. However, the planner at time t + 1 rejects the project, because
for that person the present value of the utility loss is β+δ

2
, which is greater

than the present value of the utility gain, β. The case β < δ is associated
with procrastination: a tradeoff that looks attractive when viewed from a
distance becomes less attractive when viewed from close up. If a unit of time
is taken to be the span of a generation, quasi-hyperbolic discounting implies
that we are willing to make smaller sacrifices for our children than we would
like them (and all subsequent generations) to make for their children.

One resolution to the time-inconsistency problem assumes that the initial
planner chooses the current action under the belief that her entire sequence
of preferred actions will be carried out. This resolution is dubious in a multi-
generation context, where a current decision maker is unlikely to believe
that she can set policy for future generations. A second resolution is to treat
the policy problem as a sequential game amongst policymakers (Harris &
Laibson 2001, Karp 2007). The optimal action for a social planner at time t
depends on her belief about how policymakers will behave in the future. In
a Markov perfect equilibrium, actions, and therefore beliefs about future ac-
tions, are conditioned only on directly payoff-relevant state variables. Often
those variables have a physical interpretation, e.g. an environmental stock.
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14.6.3 Overlapping generations

A closely related explanation for non-constant discounting rests on a model
of overlapping generations. Suppose that agents discount their own future
flow of utility at a constant pure rate of time preference, ρ, and that in
addition they discount the welfare of the not-yet born at rate λ. Agents
with both “paternalistic” and “pure” altruism care about the utility flows of
future generations; for these agents, λ <∞, and for agents without altruism,
λ = ∞. Agents with pure altruism – unlike agents with paternalistic altruism
– consider the effect on intermediate generations of the welfare of more distant
generations (Ray 1987, Andreoni 1989).

If agents’ lifetimes are exponentially distributed, with no aggregate uncer-
tainty, all agents currently alive have the same expected lifetime (Yaari 1965,
Blanchard 1985). Absent other considerations (e.g. different levels of wealth,
because older agents have had more opportunity to accumulate) agents cur-
rently alive are identical, so there is a representative agent in the usual
sense. If instead, agents’ have random lifetimes with finite support (Calvo
& Obstfeld 1988) or finite deterministic lifetimes (Schneider et al. 2012), the
older agents have shorter remaining (expected) lifetimes. In this case, a so-
cial planner, perhaps a utilitarian, aggregates the preferences of agents alive
at a point in time.

For the case of exponentially distributed lifetimes and paternalistic altruism,
the discount factor of the representative agent is the weighted sum of two
exponentials (Ekeland & Lazrak 2010). (Models with pure and paternalistic
altruism are observationally equivalent.) The associated discount rate is
non-constant, except for the two limiting cases, λ = ρ or λ = ∞; in the first
limiting case, the social discount rate is constant at ρ and in the second it
is constant at ρ + the death rate. If ∞ > λ > ρ the social discount rate
increases over time asymptotically to ρ + the death rate. If λ < ρ the social
discount rate decreases over time asymptotically to λ. For both λ < ρ and
ρ < λ < ∞ agents have a degree of altruism and non-constant discounting,
but only λ < ρ corresponds to hyperbolic discounting. We noted above that
many have argued that the only ethical choice is to treat all generations
symmetrically, regardless of their date of birth. In this context, that requires
λ = 0, so that the social planner’s evaluation of the stream of an agent’s
utility does not depend on when she was born.

The previous section explains why a time inconsistency problem arises when
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discount rates are non-constant. As noted above, one resolution is to consider
a Markov perfect equilibrium in the game amongst generations. A second
resolution eliminates the time inconsistency problem by assuming that the
social planner at any point in time discounts the utility of those currently
alive back to their time of birth, rather than to the current time.
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Table 1 Parameters of the model

β = 0.985 utility discount factor (rate of pure time preference δu =
0.015)

ρ = −1 characterizes elasticity of intertemporal substitution as
1

1−ρ

δK = 0.1 depreciation rate of capital (in code it is persistence of
capital 0.9)

δM = 0.01 decay rate of CO2

σ = 0.1 emission intensity of GDP, i.e. (CO2 in GtC/GDP in
trillion USD, called ‘emint’ in code)

AL = 37.842 effective labor in million, composed of
· A = .0058 (level of labor productivity)
· L = 6514 in million, (Population=Labor)

κ = .3 capital elasticity in production
B = 1.1 in GtC/year, CO2 from land use change and forestry

(B1 in code)
EF = 0 External forcing
Ψ = 0.0561 abatement cost, multiplicative constant
a2 = 2.8 abatement cost, exponent
b1 = 0 damage, intercept
b2 = 0.00284 damage, quadratic constant (% of GDP lost at 1°C

above preindustrial)
b3 = 2 damage, quadratic exponent
s = 3.08 Climate sensitivity, i.e. equilibrium response to doubling

of atmospheric CO2 concentration with respect to prein-
dustrial concentrations (value differs from DICE)

Mpreind = 596 in GtC, preindustiral stock of CO2 in the atmosphere
K(0) = 137 in trillion 2005-USD, initial value for global capital stock
M(0) = 808.9 in GtC, Initial stock of atmospheric CO2
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15 Time Inconsistency

Many economic problems involve situations where different types of agents,
all of whom solve dynamic problems and who have rational expectations,
differ in their strategic power. For example, a policymaker such as the gov-
ernment recognizes that its decisions affect the behavior of a group of agents
who behave non-strategically. To discuss the generic case, we refer to the
strategic agent as the leader, and the non-strategic agent(s) as the follower(s).
This terminology emphasizes the parallel between the dynamic models that
we consider here and static models with a Stackelberg equilibrium. In the
Stackelberg equilibrium, the leader moves first, and chooses his action with
a view to affecting the subsequent action of the follower.

Exogenous uncertainty is peripheral to the issues we are interested in here, so
for simplicity we assume that there is no exogenous uncertainty. The state-
ment that agents have rational expectations means that they have rational
“point” expectations. That is, they are able to understand how all agents
behave and therefore predict the outcome of the variables that are of interest
to them. In the absence of exogenous uncertainty, the rational expectations
assumption means the predictions are completely accurate. There are no
surprises in this setting.

We are interested in situations where the decision trajectory that is optimal
for the leader at an initial time, say time 0, is not optimal at a subsequent
time. In this case, the leader has an incentive, at time t > 0, to change the
trajectory of decisions that she announced at an earlier time. The policy
that the leader announced at time t = 0 is said to be time-inconsistent. Time
inconsistency typically arises when the the leader has a second best policy,
i.e. one that generates a “secondary distortion”, as defined below.

In the absence of an ability on the part of the leader to commit to the policy
trajectory she announced at time 0, rational agents would not believe that
this policy trajectory would actually be implemented. The time inconsistent
equilibrium is therefore generally considered implausible.

This chapter uses examples to illustrate circumstances where the optimal
policy (from the standpoint of the leader) is time inconsistent, and it shows
how to determine an equilibrium that is time inconsistent. We discuss the
distinction between time consistency and subgame perfection or (Markov per-
fection), and we explain a source of multiplicity of Markov perfect equilibria
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(MPE).

15.1 An optimal tax example

This example illustrates why time inconsistency typically arises when the
leader is restricted to use a second best policy, i.e. one that generates a sec-
ondary distortion. The example here is based on a simple dynamic general
equilibrium problem in which all private agents (consumers, firms, workers,
etc.) are price takers. Individuals allocate their time between work and
leisure, a decision that depends on the endogenous wage. Income consists of
labor income and the return on investment; individuals allocate their income
between consumption and investment. Firms rent capital and hire workers.
There are no distortions, so a competitive equilibrium without taxes is effi-
cient. The government wants to maximize the present discounted welfare of
the representative agent, so it chooses zero taxes.

There is an obvious asymmetry between the government and private agents.
The latter understand how prices evolve, but they take prices as given. All
of these agents are small relative to the aggregate economy, so no private
agent is able to influence aggregate outcomes. In contrast, the government
is large enough to influence the economy, by means of its taxes. Here it is
clear why we refer to the government as the leader, and all other agents as
followers.

Now alter the model so that the government has an exogenously given budget
constraint: the government needs to raise a certain amount of revenue in
each period. If there were taxes that leave unchanged private decisions
regarding labor supply and demand and investment, then those taxes are
first best. However, many taxes change individuals’ decisions; we refer to
such a change as a “secondary distortion”. For example, a tax on capital
changes investment decisions and a tax on labor changes the supply of labor.

For concreteness, suppose that the government has at its disposal only taxes
on the returns to capital (profits) and on the return to labor (wages). The
theory of optimal taxation tells us that the level of an optimal tax is inversely
related to the elasticity of supply of the factor being taxed. For example, if
the supply of labor is fixed, i.e. the elasticity of supply of labor is zero, then a
tax on wage income changes the after-tax wage without altering the amount
of labor in the market; in this limiting case, the labor tax raises revenue
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without creating a “distortion”. In the model described above, workers
have an alternative use of their time (leisure), so the elasticity of supply of
labor is positive, a fact that tends to decrease the optimal tax on wages. In
contrast, at a point in time, the stock of capital is fixed, i.e. its supply is
perfectly inelastic. Therefore, in a static setting it is optimal to raise all of
the needed revenue by taxing capital, not labor.

The government in our example faces a dynamic rather than a static problem.
Although the current tax does not affect the current supply of capital, the
anticipation of future capital taxes does affect the incentive to invest, thereby
altering future supply of capital. There is a difference between the long run
and the short run elasticity of supply of capital. Consider the situation
of the government at time t = 0 deciding on the tax portfolio that will
be implemented at t > 0. The capital tax at t, τt, serves two functions.
Most obviously, it raises revenue at time t; this is the reason for the tax.
Conditional on the stock of capital at time t, the incentives described in
the previous paragraph militate in favor of a relatively large capital tax.
However, τt also influences investment decisions over [0, t), thereby affecting
the stock of capital at time t. A larger tax discourages investment and leads
to a lower time-t capital stock. This fact militates in favor of a smaller value
of τt.

The optimal value of τt, from the standpoint of the government at time 0,
must balance the offsetting incentives. The time inconsistency arises because
the balance of incentives changes over time. For example, at time t− ε > 0,
everything that has happened in the past, including past investment, is taken
as given; conditional on past events, τt can affect investment only over the
interval [t−ε, t). As ε becomes small, the incentive to use a low τt in order to
encourage investment diminishes, but the incentive to use a high τt to raise
revenue at time t is unchanged. The fact that the incentives change over
time means that the optimal value of τt changes as we get closer to time t.
Therefore the value of τt that was optimal at time t = 0 ceases to be optimal
at t > 0.

The policy trajectory that is optimal at time t = 0 is often called the optimal
open loop policy, because it changes only as a function of time. Judd (cite)
shows that in an economy of the type described above, the optimal open
loop capital tax starts at a high level, and the optimal open loop labor tax
begins at zero. However, in a steady state, the optimal open loop capital
tax converges to 0, while the optimal labor tax rises over time. Of course,
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this open loop trajectory is (in most circumstances) time inconsistent.

15.2 Two definitions

The terms “time consistent” and “subgame perfect” are sometimes used in-
terchangeably. The difference between the two is important in games where
agents are symmetric, in the sense that no agent (or group of agents) is iden-
tified as the leader. The difference is less important in the current context,
where agents are asymmetric, simply because the time consistent equilib-
ria that interest us are (in general) also subgame perfect. However, it is
worth explaining what the two terms mean, and in particular the manner in
which their meanings differ. In order to keep the discussion grounded, we
frequently use the tax example of the previous subsection.

The state variable is the collection of objects that determine the evolution
of the economy. The value of a state variable at a point in time is predeter-
mined, but in many cases it is endogenous to the model. The modeler has
some latitude in defining the state variable, but usually the context of the
model suggests a natural choice. A refinement includes in the set of state
variables only those are “directly payoff relevant”, i.e. those objects whose
value directly affects current and future payoffs.

In the tax example above, we could define the state variable to be the current
stock of capital and all past values of taxes. This definition is sensible if we
want to build a model in which agents base their beliefs about future taxes
on past taxes, and if in addition the government actually does condition the
future taxes on past taxes. However, conditional on the current stock of
capital, the past taxes have no direct influence on payoffs. Why should the
future evolution of the economy depend on whether it reached the current
stock of capital by one trajectory or another? One might reply that past
taxes have an indirect influence on payoffs, to the extent that they affect
agents’ beliefs about what taxes will be used in the future. In this example,
the only directly payoff relevant state variable is the stock of capital.

A feasible (for the leader) open loop trajectory is a set of time-indexed cap-
ital stock, capital and labor tax, investment and labor decisions. Denote
a feasible open loop trajectory as the vector Xt,0. The first subscript t is
the time at which the variables of interest (capital, taxes, ...) are evalu-
ated, and the second subscript 0 denotes the time at which all policies are
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chosen. Feasibility means that the trajectory is consistent with the physi-
cal constraints, e.g. technology, and with the behavioral constraints arising
from private agents’ optimizing behavior. An open loop equilibrium, Xol

t,0

is a feasible open loop trajectory that maximizes the value of the leader’s
payoff functional, evaluated at the initial time.

Now suppose that we reconsider the problem at time t > 0, assuming that all
agents have behaved over (0, t) in the manner prescribed by the equilibrium,
so that the state variable at t, Xt,0, is “on the equilibrium path”. This
statement means that the state variable at t equals the value predicted for it
at time 0. Allow the leader to re-optimize at time t. If the ensuing optimal
path equals (at every point in time) the continuation of the path that was
announced at time 0, i.e. if for all s ≥ t and for all t > 0, Xol

s,t = Xol
s,0, then

the open loop trajectory announced at time 0 is time consistent. In the
tax example, we saw that the open loop trajectory is (typically) not time
consistent.

Subgame perfection implies time consistency, but time consistency does not
imply subgame perfection. Time consistency requires that if the leader
at time t is allowed to re-optimize on the equilibrium trajectory, she does
not want to change the policies announced at time 0. Subgame perfection
requires that if the leader at time t is allowed to re-optimize given any feasible
value of the state variable (not only the value that was predicted at time 0
to arise at time t), she does not want to change the policies announced at
time 0. Thus, subgame perfection subjects the candidate path to a stricter
test, compared to time consistency.

If the state variable contains all directly payoff relevant variables, and only
payoff relevant variables, a subgame perfect equilibrium is said to be Markov
perfect. In the tax example, a Markov perfect equilibrium is a tax rule
that is conditioned on the (only) directly payoff relevant state variable, the
stock of capital; this tax rule must be optimal from the standpoint of the
government at all times t and for all feasible levels of capital, given that the
government knows that its successors will use this tax rule.

15.3 The durable goods monopoly

This section illustrates the time inconsistency of optimal policy, and the
construction of Markov perfect (and therefore, time consistent) policies. Let
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Qt denote the stock of a durable good at time t, e.g. a machine. The
(implicit) rental rate at time t of a unit of good, for an interval of time
ε > 0 equals F (Qt)ε. (We refer to this as an implicit rental rate, because
in this model firms buy rather than renting the durable good. However,
F (Q) equals the amount that would make them indifferent between buying
and renting, on an equilibrium price trajectory.) We take ε sufficiently
small so that we can ignore discounting within a period, thus simplifying
the exposition. Think of F (Q) as a downward sloping demand for rental
services. For example, Q is the stock of machines, and F (Q) is the value of
marginal product of the Q’th machine. The addition of one machine, for ε
units of time, increases profits by F (Q)ε, a magnitude that depends on Q,
because the marginal productivity decreases with the number of machines.

At time t an agent can buy or sell a machine for Pt. That is, there is a
second hand market for the durable good, and in this setting an old and a
new unit of the durable good are identical and would sell for the same price.
The existence of the second hand market means that the monopoly creates
its own future competition by selling the durable good in the current period.
Another version of this model treats buyers as a continuum of agents, each
having a different reservation value for the durable good. The two models
are equivalent, only the interpretation differs slightly.

The no-arbitrage condition for agents buying the machine is

Pt = F (Qt)ε+ e−rεPt+ε. (15.1)

This condition says that the amount an agent is willing to pay for a unit
of the durable good equals the implicit rental rate during a period plus the
present value of the next period resale price. A monopoly that produces
machines at rate q incurs production costs at the rate cq + γ

2
q2, γ ≥ 0. We

assume that for Q sufficiently large, F (Q) ≤ c, in order to avoid a technical
complication. As above, we ignore discounting within a period. Therefore, if
the monopoly produces and sells qε machines at the beginning of the period,
its single period profits are (

Ptq − cq − γ

2
q2
)
ε.

The monopoly is able to sell, but not to rent machines. One explanation for
this assumption is that renting gives rise to a moral hazard problem; renters
do not take proper care of the machine, making renting unattractive.
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To help fix ideas, consider a two period problem. In this case, agents buy the
machine in the first period recognizing that they will use it in both periods;
agents who buy in the second period understand that they obtain only one
period’s use of the machine. The initial stock of machines that agents own
is Q0. If the monopoly can commit, at the beginning of the first period, to
sales in both periods, its problem is

maxq1,q2 ([F (Q0 + q1ε) + e−rεF (Q0 + q1ε+ q2ε)] q1) ε

+ [e−rεF (Q0 + q1ε+ q2ε)q2] ε

−
(
cq1 + ce−rεq2 +

γ
2
[q21 + e−rεq22]

)
ε

(15.2)

The first line of the maximand in expression 15.2 is the value of revenue from
sales in the first period, and the second line is the present value of revenue
in the second period. The third line equals the present value of costs. In
writing the revenue terms we used the fact that equilibrium sales price in the
second period equals the rental price (multiplied by ε), and the equilibrium
sales price in the first period equals the discounted sum of rental prices in
the two periods.

The parameter γ is important for subsequent results, because it makes pro-
duction costs convex in the rate of production and therefore creates an incen-
tive for the monopoly to shift some production from period 1 to period 2. In
the interest of simplicity we temporarily set γ = 0. With this simplification
we rewrite the optimization problem as

max
q1,q2

([
F (Q0 + q1ε)q1 − cq1 + e−rε (F (Q0 + q1ε+ q2ε) (q1 + q2)− cq2)

])
ε.

The sales rates must be non-negative. At an interior equilibrium the first
order conditions for q1 and q2 are, respectively,

q1 > 0 =⇒ F (1) + F ′(1)q1ε− c+ e−rε [F (2) + F ′(2) (q1 + q2) ε] = 0

q2 > 0 =⇒ e−rε [F (2) + F ′(2) (q1 + q2) ε− c] = 0, (15.3)

where the notation F (i) and F ′(i) for i = 1, 2 indicates the function F and
its derivative evaluated at the first and second period optimal stock levels.
Note that if it is optimal to set qi = 0 then the left side of the corresponding
first order condition must be non-positive. Given concavity, there is a unique
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local and global maximum. The optimal solution is to set q2 = 0 and to
choose q1 > 0 to solve(

1 + e−rε
)
(F (1) + F ′(1)q1ε)− c = 0. (15.4)

satisfies the non-negativity constraints and first first order conditions, and
. Equation 15.4 is the standard condition for maximizing profits: marginal
revenue equals marginal cost. Here marginal revenue is taken with respect
to the revenue from sales, where the price equals the discounted sum of
implicit rental rates. To confirm optimality, note that for q2 = 0, we have
F (1) = F (2) and F ′(1) = F ′(2); now the left side of equation 15.3 is

e−rε [F (2) + F ′(2) (q1 + q2) ε− c] < 0,

where the inequality follows from equation 15.4. Thus, at q2 = 0, a marginal
increase in q2 strictly decreases profits. Therefore it is optimal to set q2 = 0.

The conclusion is that when production costs are linear, the optimal policy
for the monopoly that can commit is to sell in the first period the amount
that equates marginal revenue and marginal cost, and to sell nothing subse-
quently. The explanation is that with linear production costs, the monopoly
has nothing to gain by delaying sales; doing so merely delays its receipt of
profits, reducing the present value of profits. It is easy to see that this con-
clusion holds regardless of the number of remaining periods. With linear
production costs, the monopoly that can commit wants to sell the amount
that maximizes revenue from first period sales, [(1 + e−rε)F (Q0 + qε)− c] q,
and nothing thereafter.

In the absence of the ability to commit in period 1 to period 2 sales level,
the open loop equilibrium described above is not time consistent. In period
2, conditional on period 1 sales, the monopoly’s optimization problem is

max
q2

([F (Q0 + q1ε+ q2ε)− c] q2) ε

with first order condition (assuming an interior solution)

F (2) + F ′(2)q2ε− c = 0, (15.5)

which is the standard condition from the static problem: set marginal revenue
equal to marginal cost. The first order condition 15.3, under commitment,
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and 15.5, without commitment, are different. Under commitment, in choos-
ing second period sales the monopoly takes into account the effect of those
sales on period 1 revenue. In the absence of commitment, the monopoly in
the second period take first period profits as given, and therefore ignores the
effect of second period sales on first period profits.

The solution to the first order condition 15.5 gives a second period equilib-
rium decision rule, which we denote q2 = κ(Q1), for any Q1 = Q0+q1ε. The
equilibrium second period price is therefore

P2 (Q1 + κ (Q1)) ≡ F (Q1 + κ(Q1)ε)ε

and the equilibrium second period profits are

π2 (Q1) ≡ [F (Q1 + κ(Q1)ε)− c]κ(Q1)ε.

Using this function and the no arbitrage condition 15.1 we can write the first
period optimization problem for the monopoly who cannot commit as

π1 (Q0) = max
q1

(P1 (Q1)− c) q1ε+ e−rεπ2 (Q1)

subject to Q1 = Q0 + q1ε and P1 (Q1) = F (Q1)ε+ e−rεP2 (Q1 + κ (Q1) ε) .

The first constraint follows from the definition of the stock. The second con-
straint uses the no arbitrage condition 15.1, and is a consequence of buyers’
optimizing behavior.

We emphasize the relation between this problem and the kind of dynamic
programming problems that we have seen earlier. The similarity is that in
both this problem and the more familiar problem, we have to find the value
function in order to solve the problem in the current period. The difference
is that here we have one more endogenous function, the equilibrium price
function. We obtain both of the endogenous functions, π2 and P2 by solving
the problem backwards.

We now consider the limit of this problem as the number of remaining periods
goes to infinity. We assume that this limit exists and seek a stationary
solution, i.e. a decision rule, value function, and price function that depend
on the current state variable, but not on calendar time. To this end, we
merely remove the time subscripts in the previous two-period problem, to
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write the dynamic programming equation for the infinite horizon problem as

π (Q) = max
q

(P (Q′)− c) qε+ e−rεπ (Q′) (15.6)

subject to Q′ = Q+ qε and P (Q′) = F (Q′)ε+ e−rεP (Q′ + κ (Q′) ε) .
(15.7)

The variable Q is the stock at the beginning of the period, and Q′ is the
stock after sales in the current period, qε. The first order condition to this
problem, for all ε > 0, is([

dP (Q′)

dQ
q + e−rεdπ (Q

′)

dQ

]
ε+ P (Q′)− c

)
= 0. (15.8)

The term in square brackets is multiplied by ε. For small ε, the first order
condition therefore is approximately the condition that price equals marginal
cost, which is also the condition for a competitive firm. The Coase Con-
jecture states that as ε approaches 0, the behavior of the durable goods
monopoly that is not able to commit to a sales trajectory approaches the
behavior of a competitive industry. Coase described this result by saying
that monopoly power “vanishes in the twinkling of an eye”.

We confirm this conjecture by examining the limiting equilibrium, as ε −→
0. The functions P and π depend on ε. We assume that these functions
change smoothly with ε, so that the following Taylor expansion is valid.
Using a Taylor approximation of the dynamic programming equation and
the constraints, we write the limiting form of equations 15.6 and 15.7 as

rπ (Q) = max
q

[
P (Q)− c+

dπ(Q)

dQ

]
q (15.9)

subject to
dQ

dt
= q and

dP

dt
= rP (Q)− F (Q).

The equation of motion dQ
dt

= q is data, i.e. it is given by the statement of

the problem. The constraint Ṗ = rP (Q) − F (Q), in contrast, is given by
the optimizing behavior of private agents. The function P (Q) is not data;
it is endogenous, and must be determined in order to solve the maximization
problem; in much the same way as the function π (Q) must be determined.
To distinguish the two types of constraints we refer to the second, Ṗ =
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rP (Q)− F (Q), as a “side condition”. Although P (Q) is endogenous to the
model, the monopoly takes it as given. The function equals

P (Qt) =

∫ ∞

t

e−r(s−t)F (Qs)ds,

i.e. it is actually a functional of {Qs}∞s=t. However, in a Markov perfect
equilibrium, qt = κ (Qt), for some function κ (). Substituting this function
in the equation of motion Q̇ = q, we can write the integral as a function of
the current value of Q. Because the monopoly at time t takes the decision
rule of future incarnations of itself as given, it takes the function P (Q) as
given. The function P (Q) must be such that when the monopoly solves
the DPE 15.9 subject to Q̇ = q, taking P (Q) as given, the induced function
P (Q) solves the side condition Ṗ = rP (Q)− F (Q).

The maximand in the DPE 15.9 is linear in the control. The problem is
analogous to that of a competitive firm that faces a constant price and has
constant marginal production costs. The functions π and P are determined
by the monopoly’s future behavior. Given the inability to commit, the
monopoly at a point in time is not able to choose this behavior. At most,
the monopoly can influence this behavior by affecting the level of the durable
goods stock that it bequeaths to its successors (its future reincarnations). In
the case at hand (but not more generally), that limited influence is useless,
because agents – here, buyers – anticipate that future sales will be either
q = 0 or q = ∞. In the latter case, the stock jumps to its steady state value.
The steady state value is the level at which dP

dt
= 0, i.e. where P (Q) = F (Q)

r
.

The steady state stock equals the level that satisfies F (Q)
r

= c, which is the
competitive level. In the limit as ε −→ 0, the durable goods monopoly has
no market power. Its “future selves” compete away all potential market
power.

One further detail is worth mentioning. The previous paragraph shows
that one equilibrium involves an instantaneous jump in the stock to the
competitive level. Are there other equilibria? To see why the answer is
“no”, note that if it is optimal to set q to a positive finite level, it must be
the case that P (Q)− c+ dπ(Q)

dQ
= 0. In this case, equation 15.9 implies that

the value of the monopoly’s program is rπ (Q) = 0, i.e. the monopoly makes
0 profits on any equilibrium trajectory.
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15.3.1 An extension to convex costs

Kahn (198?) shows that when production costs are convex, i.e. for γ > 0,
the durable goods monopoly retains some market power, i.e. earns rent even
in the limit as ε −→ 0. Proceeding formally, we can replace the dynamic
programming equation 15.9 with

rπ (Q) = max
q

[
P (Q)− c− γ

2
q +

dπ(Q)

dQ

]
q

subject to the same constraints as above. The convexity of costs means that
setting q = ∞ is never an optimal decision. The positive value of γ does not
change the steady state, because in the steady state sales equal zero.

The first order condition outside a steady state, i.e. when q > 0, is

P − (c+ γq) = −dπ(Q)
dQ

> 0, (15.10)

where the inequality follows from the fact that a higher existing stock of the
durable good reduces future sales, reducing the present value of the stream
of future profits. The competitive firms sets price equal to marginal cost.
Outside the steady state, the monopoly sets price strictly above marginal
costs, and earns profits even though it is unable to commit. The monopoly
slows sales relative to the competitive level, in order to increase the stream
of profits. Monopoly power vanishes, but only asymptotically, not in the
twinkling of an eye.

Kahn uses a linear rental function, F = a−bQ and shows that the equilibrium
price function is also linear, with P = A−BQ, and the value function (π) is
quadratic. The parameters of these functions depend on the parameters of
the problem, a, b, c, γ and r. (See the problem set.)

15.3.2 An extension to depreciation

Karp (1995) shows that if the durable good depreciates, there in a family of
Markov perfect equilibria. Only one of these results in zero profits. In all
other equilibria the monopoly earns profits, so “depreciation erodes the Coase
Conjecture”. The multiplicity of equilibria arises for the same reason as in
many dynamic strategic settings: the lack of a “natural boundary condition”.



15.3 The durable goods monopoly 367

In the case above, where the durable good does not depreciate, it must be
the case that eventually the stock of the good converges to the competitive
level, where F (Q)

r
= c. It cannot be the case that in a Markov perfect

equilibrium the monopoly stops producing when there are still opportunities
for profit. In contrast, when the good depreciates, in a steady state the
monopoly continues to produce enough to maintain the steady state. Here
there is nothing in the description of the problem that tells us the level to
which the stock must converge. There is not a natural boundary condition.

Setting γ = 0 and now including a positive depreciation rate, δ > 0, we
obtain the DPE and the constraints

rπ (Q) = max
q

[
P (Q)− c+

dπ(Q)

dQ

]
q − dπ(Q)

dQ
δQ (15.11)

subject to
dQ

dt
= q − δQ and

dP

dt
= (r + δ)P (Q)− F (Q).

As was the case before, the maximand is linear in the control; an interior
equilibrium requires that the term that multiplies q equals 0:

P (Q) = c− dπ(Q)

dQ
. (15.12)

This equilibrium condition implies, using the DPE 15.11,

rπ (Q) = −dπ(Q)
dQ

δQ.

The solution to this differential equation is

π (Q) = kQ−r/δ, (15.13)

where k is a constant of integration.

For k = 0 we obtain the solution in which the monopoly behaves exactly like
a competitive firm, and earns zero profits. For positive k we can differentiate
the expression for π in equation 15.13 and substitute the result into equation
15.12 to obtain the price function, indexed by k

P k (Q) = c+
rk

δ
Q−(r+δ)/δ.

The superscript k on the price function is an index, indicating that the
function depends on the still undetermined constant k. Further analysis
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shows that there is an interval of k ranging from 0 to a positive level, which
depends on the parameters of the problem. For values of k in this interval,
the price function P k (Q) is an equilibrium price function, except for a set of
initial levels of Q close to 0. For initial values of Q close to 0, the monopoly
produces at an infinite rate, causing Q to jump to a larger level, after which
P k is the equilibrium price function, and sales are positive and finite. The
stock converges asymptotically to a steady state, a monotonic function of
k. Thus, we can characterize a particular equilibrium using the index k, or
equivalently by using the corresponding steady state.

The conclusion is that the lack of a natural boundary condition leads to
an infinite multiplicity of equilibria. To each of these equilibria there is
a different steady state. All equilibria except for one, indexed by k = 0,
result in positive profits for the monopoly along the entire trajectory path.
Therefore, with depreciation, monopoly power need not vanish either in the
twinkling of an eye or asymptotically.

15.4 A nonrenewable resource

We now consider a problem in which an importer of a non-renewable resource
uses a tariff to extract rents from the competitive owner of the resource. The
analysis for the case where the resource owner is a monopoly is similar. Here
we assume that the importer is the only consumer of the resource. Section
15.5 discusses a possible outcome when agents other than the tariff-wielding
importer also consume the resource.

The seller receives the price pt and the importer uses a unit tariff mt, so the
domestic price in the importing country is pt +mt.. Let x be the stock of
the resource, c(x) the unit cost of extraction, and r the discount rate. The
competitive seller, who takes the price path as given, chooses an extraction
profile {y}∞t=0 to maximize∫ ∞

0

e−rt (pt − c(xt)) ytdt

subject to
ẋ = −y, xt ≥ 0.

The optimality conditions yield the Hotelling condition

ṗ = r (p− c(x)) . (15.14)
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The importing country obtains a flow of welfare equal to U (y) − py, where
U(y) is the utility of consuming at rate y and py is the cost of imports.
Consumers actually pay (p+m) y, so the consumer surplus is U(y)−(p+m)y,
but the tariff revenues my, are returned in a lump sum, so the net flow of
consumer welfare is U(y)− py. The tariff affects welfare via it’s influence on
the producer price, p.

We first consider the open loop solution, in which the importer is assumed
to be able to commit at time 0 to an arbitrarily long tariff profile. We
show that in general this trajectory is time inconsistent. We then consider
a parametric example for which we can find the Markov perfect equilibrium.

The importer actually chooses the sequence of tariffs. However, it is conve-
nient to write the problem as if the importer chooses the sequence of imports.
Given this sequence, we can find the sequence of tariffs. If imports are y, the
domestic price is U ′(y); the tariff equals the difference between the domestic
price and the producer price, m = U ′(y)− p.

The importer is constrained by the equation of motion for the stock, a phys-
ical constraint, and the Hotelling condition, a behavioral constraint (one
that arises from sellers’ optimizing behavior). The importer’s current value
Hamiltonian in the open loop equilibrium is

H = U(y)− py − µy + λ (r (p− c(x))) ,

where µ is the costate variable for the state variable x and λ is the costate
variable for the “state variable” p.

Of course, p is not a typical state variable. The importer takes its law of
motion as given – because this law is determined by the seller’s optimizing
behavior – but the initial value of the price is not given. When we in-
troduced the control problem (Chapter xx) we noted that for the case of a
finite horizon, there were two types of boundary condition. If the terminal
value of the state variable is given (i.e. exogenous) the terminal value of
the corresponding costate variable is endogenous. However, if the terminal
value of the costate variable is free (and if there is no scrap function), then
the terminal value of the costate variable must be 0. The intuition for this
transversality condition is that the costate variable equals the shadow value
of the state variable. If the state variable at the terminal time is free, under
optimal behavior its shadow value must be 0.
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A similar boundary condition holds here, but it applies at the initial rather
than the terminal time. The initial price is determined by the entire sequence
of future tariffs. By altering this sequence of tariffs, the importer alters the
initial price. In an open loop trajectory the importer chooses the sequence
of tariffs optimally, and thus chooses it so that the shadow value of the price,
at time 0, equals 0. The fact that the initial value of p is endogenous means
that, relative to the standard optimal control problem, we are missing one
piece of information. However, the boundary condition λ0 = 0 replaces
that missing information, so we still have the right number of optimality
conditions needed to obtain a unique solution to the maximization problem.

The other necessary conditions for optimality are

U ′(y)− p− µ = 0 =⇒ m ≡ U ′(y)− p = µ

λ̇− rλ = y − rλ =⇒ λ̇ = y =⇒ λt =

∫ t

0

ytdt = x0 − xt

µ̇− rµ = λc′(x).

The middle line uses the boundary condition λ0 = 0. We now follow the
usual procedure to obtain the Euler equation: we differentiate the algebraic
equation (the first line above) and use the costate equations. The result is

U ′′(y)ẏ = r [U ′(y)− c(x)] + (x0 − xt) c
′ (xt) . (15.15)

If the importer were allowed to re-optimize at a later time, s > 0, it would face
the same problem as above, except with initial stock xs rather than x0. The
Euler equation would have the same form, except that (xs − xt) c

′ (xt) would
replace the term (x0 − xt) c

′ (xt). Therefore, the open loop path announced
at time 0 is not time consistent, except for the special case where costs are
stock independent. In that case, the importer can use the tariff to extract
all of the rent from the seller, i.e. the importer can essentially expropriate
the resource. When the importer obtains all of the rent from the resource, it
has no incentive to re-optimize. Here the importer achieves the “first best”:
there is no “distortion” from the importer’s standpoint, and no incentive to
re-optimize.

We now consider the Markov perfect equilibrium. The importer has an
infinitesimal period of commitment. The payoff-relevant state variable is
the stock of the resource. The tariff is conditioned on the current stock
of the resource, and the exporter understands this fact. The equilibrium
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producer price is therefore a function of the stock of resource remaining,
pt = P (xt). The function P is endogenous; we need to find this function
in order to calculate the equilibrium. An equilibrium price function must
satisfy the Hotelling condition, equation 15.14, at every value of x between
0 and the initial condition, i.e. for all feasible values of the state variable.

Let J(x) be the importer’s value function. Using the same methods as we
employed for the durable goods monopoly problem, the dynamic program-
ming equation is

rJ(x) = max
y
U(y)− P (x)y − Jx(x)y.

Again, we need to obtain two functions, J and P , to obtain the equilib-
rium. In a standard control problem, we would need to obtain only the
value function.

This problem resembles that of the durable goods monopoly with convex pro-
duction costs. The optimal level of imports is bounded due to the concavity
of U(y). The first order condition implies

m (x) ≡ U ′ (y)− P (x) = Jx (x) > 0. (15.16)

The inequality follow because the importer obtains surplus from imports, and
the present value of the stream of this surplus increases with the remaining
stock. The monopsonistic importer of the non-renewable resource exercises
market power (uses a positive tariff), just as the monopolistic supplier of the
durable good does, even though neither is able to commit to the actions of
its successors. Equations 15.10 and 15.16 show that the monopoly markup
(the difference between price and marginal cost) and the monopsonistic tariff
are both positive along the equilibrium trajectory. In a competitive setting,
the markup and the tariff are both 0.

If the domestic demand function is linear, with U ′(y) = α − y and the unit
extraction cost function is also linear, with c(x) = α − bx, it is possible to
obtain an explicit solution to the problem (see the problem set).

15.5 Disadvantageous power

The economic literature is replete with examples where the ability to exercise
market power, or the ability to cooperate, or the possession of some other
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feature that would seem to benefit the agents with that feature, actually
leaves them worse off. This apparently paradoxical result might occur if
agents are unable to make commitments about future behavior. These
examples are all illustrations of the “theory of the second best”, which says
(roughly) “Unless you begin at a local optimum, a small change, such as an
increase in market power, leads to a first order welfare change that could be
positive or negative.”

One of the earliest examples of this situation arises when a proper subset
of oligopolists form a cartel (cite Salant, Switzer and Reynolds) and firms
choose quantities. The equilibrium is Nash-Cournot both with and without
the cartel. When the cartel exists, members set joint output to maximize
the cartel’s joint profits. In the absence of the cartel, each firm sets output
to maximize its own profits. Each firm creates an externality on other firms,
because an increase in sales by firm i reduces the price, reducing other firms’
profits. The cartel internalizes that externality for its members, i.e. it takes
into account how an increase in sales by any member affects the profits of
all members. This internalization causes the cartel to reduce its cumulative
production. The optimal response of non-members is then to increase their
own output. Actions in this setting are “strategic substitutes”, meaning
that an increase in agent i’s action causes agent j to decrease its own action;
here the “actions” are sales level.

The possible reduction in equilibrium profits, for cartel members, occurs only
because of the cartel’s (assumed) inability to commit to a sales level. If the
cartel could commit, at the time of formation, to its cumulative output,
the increase in market power could not possibly be disadvantageous. With
commitment ability, it is feasible for the cartel to commit to produce the non-
cartel level, leaving it with the non-cartel profit level. Although feasible,
this action is typically not optimal, so the cartel can strictly increase its
joint profits by some other action. In the absence of an ability to commit,
the cartel is forced by the logic of the game to sell at the Nash-Cournot
production level, raising the possibility that its profits will be lower. In
a game involving both investment and sales, industry profits may be lower
and consumer welfare higher even if all firms in the industry form a cartel
(Gatsios and Karp (cite)). This possibility arises if investment precedes the
formation of the cartel, which then decides on industry supply.

Maskin and Newbery (cite) show that an importer’s market power can be
disadvantageous in the non-renewable resource game. The key to this pos-
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sibility is that the importer faces competing demand from other consumers.
That is, the importer who uses the tariff is an oligopsonist, but not a monop-
sonist. In order to see the reason for this possibility, take the (admittedly
extreme) case of a two-period model, in which the tariff-imposing importer
has negligible demand for the resource in the first period, and high demand
in the second period; competing importers have negligible demand in the
second period and high demand in the first period. The stock of the re-
source is finite, costless to extract, and is supplied by a competitive owner.
The resource cannot be stored once extracted (or can be stored only at high
cost). Because the world ends after two periods, and extraction is costless,
cumulative extraction and sales during the two periods must equal the initial
stock.

The competitive owner’s equilibrium behavior requires that if sales are posi-
tive in both periods, the ratio of second to first period prices is 1 + r, where
r is the discount rate. If the oligopsonistic importer is able to commit to
a zero tariff in both periods, it buys a non-negligible quantity in the second
period and obtains non-negligible surplus. However, a zero second period
tariff is not subgame perfect, if the remaining stock in the second period is
non-negligible. The importer is virtually a monopsonist in the second period,
because of the assumption that competing demand in the second period is
negligible. Therefore, the importer has an incentive to use a high second
period tariff in order to essentially expropriate the resource. Under this
tariff, the second period producer price is close to 0, for any non-neglibible
stock level. The owner with rational expectations, recognizing this outcome,
decides to sell all (or almost all) of the resource in the first period. By as-
sumption, the tariff-wielding importer has essentially no use for the resource
in this period, and no practical way of storing it, so it receives almost no
surplus in equilibrium.

A final example illustrates that cooperation can be disadvantageous (cite
Rogoff). Consider a two period, two country competitive general equilib-
rium. In the first period, the stock of capital is predetermined. Investment
decisions during this period determine the amount of capital in the second
period. Capital is internationally mobile. The government in each country
taxes labor income and capital income (profits, rent) in order to raise enough
revenue to satisfy an exogenous budget constraint. We consider the two sit-
uations, first when the two governments are not able to cooperate with each
other in setting their tax policies, and then when the governments are able
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to cooperate.

Absent cooperation, the international mobility of capital means that coun-
tries face “tax competition” in both periods. If one country levies a tax on
capital, the other country has the incentive to charge a slightly lower tax in
order to induce capital to come that country. If the marginal productivity
of capital is nearly constant, then a slightly lower tax induces almost all of
the capital to flow to the country with a lower tax. Each country therefore
has an incentive to undercut the other country’s tax on capital, leading to
a near-zero equilibrium capital tax. In order to satisfy their budget con-
straints, both countries then have to use large labor taxes. Unless labor
supply is perfectly inelastic, this tax creates a distortion in the labor market.
The positive side of this lack of cooperation is that investors know that the
second period equilibrium capital tax will be low, so they have a substantial
incentive to invest.

With cooperation, the two countries can jointly determine the taxes. In the
second period, the existing stock of capital is fixed, so using the insight from
the optimal tax literature described above, it is optimal to raise all (or at
least most) of the needed revenue in the second period using a capital tax.
Foreseeing this high capital tax, agents have a lower incentive (relative to the
non-cooperative scenario) to invest in capital. Cooperation thus increases
first period joint welfare, because it makes it possible to raise the revenue
without distorting the labor market. But cooperation may decrease second
period joint welfare, because it leads to a reduction in the equilibrium level
of capital.

One could generate an endless supply of examples of disadvantageous market
power, or disadvantageous cooperation. The important thing to recognize is
that these examples all arise due to agents’ inability to make commitments
today about actions that will be taken in the future. The consequences
of this inability may increase with the degree of market power of the agent
taking the action. All of these examples illustrate the theory of the second
best.

15.6 Problems

1. Obtain the formulae for the coefficients of the endogenous price function
P = A − BQ resulting from the linear rental function F = a − bQ in
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Section 15.3.1, where γ > 0. (Use a machine!)

2. For the linear example in Section 15.4, with U ′(y) = α− y and c(x) =
α − bx, obtain a closed form solution to the Markov perfect equilib-
rium and also to the competitive equilibrium. Using some numerical
values for parameters, calculate the percentage gain in welfare for the
importer, and the percentage loss in welfare for the exporter, in moving
from a competitive to a (Markov perfect) monopsonistic equilibrium.
(In passing, determine whether the setting the coefficient for y in the
function U ′(y), and using the same intercept (α) in the two functions
U ′(y) and c(x) entails any loss in generality.
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16 Disentangling Intertemporal Substitutabil-

ity from Risk Aversion

Up to date the intertemporally additive expected utility specification is the
the prevailing framework for dynamic analysis in economics. It is well known
that the framework implicitly assumes that a decision maker’s aversion to risk
coincides with his aversion to intertemporal fluctuations. ? and ? derived an
alternative setting in which these two a priori quite different characteristics of
preference can be disentangled. This section presents the basic welfare frame-
work and derives a related asset pricing formula. We introduce the concept
of intertemporal risk aversion and of an intrinsic preference for the timing of
risk resolution, both of which are closely related with the disentanglement of
risk vs intertemporal consumption smoothing.

16.1 An Intertemporal Model of Risk Attitude

We will refer to the ‘standard model’ as the modeling framework where a
decision maker evaluates utility seperately for every period and for every state
of the world and then sums it over time and over states. Formally let x =
(x0, x1, x2, ...) denote a consumption path and p(x) a probability distribution
over the latter. Then, assuming stationary preferences, the decision maker’s
overall welfare is given by

U = Ep
∑
t

βtu(xt)

where β is the utility discount factor. The curvature of u captures the deci-
sion maker’s aversion to consumption fluctuations. Because the same utility
function is used to aggregate over time and over risk, the decision maker’s
aversion to (certain) intertemporal fluctuations is the same as his aversion to
risk fluctuations corresponding to different states of the world.

A priori, however, risk aversion and a decision maker’s propensity to smooth
consumption over time are two distinct concepts. Recall that (von Neumann
& Morgenstern 1944) axioms are underlying the notion that in an atem-
poral setting we can evaluate risky scenarios by means of a von-Neumann
Morgenstern utility index uvNM so that

U = EuvNM(x)
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represents preferences. Here, the curvature of uvNM captures risk aversion.
In particular, the Arrow-Pratt measure of relative risk aversion RRA(x) =
uvNM′′

(x)

uvNM′
(x)
x attaches a numeric value to curvature and risk aversion that does

not depend on affine transformations of uvNM.107 A similar set of axioms
of additive separability108 have been formulated for preferences evaluating
consumption paths under certainty. These axioms give rise to a preference
representation on certain consumption paths that takes the form

U =
∑
t

uintt (xt) . (16.1)

Assuming in addition a stationary evaluation of certain consumption paths
makes the utility in the different periods coincide up to a common discount
factor β:

U =
∑
t

βtuint(xt) . (16.2)

In equation (16.2) the concavity of the utility function uint describes aversion
to intertemporal consumption volatility. In a one commodity setting109 this
aversion to intertemporal volatility can be measured by means of the con-

sumption elasticity of marginal utility η = uint
′′
(x)

uint
′
(x)
x.110 Note that this mea-

sure exactly corresponds to the Arrow Pratt measure of relative risk aversion,
only in the context of periods rather than risk states. Instead of calling η an
aversion measure to intertemporal volatility, we can also characterize it as a
decision maker’s propensity to smooth consumption over time.

107The invariance under affine transformations is a desideratum born from the fact that
a function uvNM′

= auvNM + b with a, b ∈ IR, a > 0 represents the same underlying
preferences as does uvNM.
108See ?, ?, ?, ?, ?, ?, and ? for various axiomatizations of additive separability over

time. Other than the von Neumann & Morgenstern (1944) axioms, these axioms allow
for period specific utility functions (which would correspond to a state dependent utility
model in the risk setting).
109? generalized the one commodity measure by Arrow Pratt to a multi-commodity

setting. Here risk aversion becomes good-specific and corresponds to the concavity of
the utility function along a variation of the particular commodity keeping the others con-
stant. The same concept of a multi-dimensional measure could be applied to intertemporal
substitutability.
110Which is the inverse of the intertemporal elasticity of substitution.
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A priori the utility functions uvNM and uint are two distinct objects that
carry two different types of information. In Traeger (2010a) I derive this
intuition more formally. The paper combines the von Neumann-Morgenstern
axioms with the assumption that certain consumption path can be evaluated
in the additively separable form (16.1) (or 16.2). The resulting preference
representation features two independent functions that – in a one commodity
setting – can be identified with the functions uvNM and uint above.

Let us derive the form of such an evaluation intuitively for a 2 period set-
ting with certain consumption in the first and uncertain consumption in the
second period (‘certain×uncertain’ setting). Let

U1(x1, x2) = uint(x1) + βuint(x2) (16.3)

represent preferences over certain (two period) consumption paths. Let

U2(p) = EuvNM(x)

represent preferences over second period lotteries. Define xp2 as the second
period certainty equivalent to the lottery p by

U2(x
p
2) = uvNM(xp2)

!
= U2(p) = Epu

vNM(x) (16.4)

⇒ xp2 = uvNM−1 [
Epu

vNM(x)
]
.

Now use the certainty equivalent to extend the evaluation functional in equa-
tion (16.3) to a setting of uncertainty by defining

U(x1, p) = U2(x1, x
p
2) = uint(x1) + βuint (xp2)

= uint(x1) + βuint
(
uvNM−1 [

Epu
vNM(x)

])
.

In taking the inverse of uvNM we have assumed a one dimensional setting. In
general, we can show that uvNM is always a strictly monotonic transformation
of uint (Traeger 2010a). Thus defining f by uvNM = f ◦uint we can transform
the equality (16.4) into

f ◦ uint(xp2)
!
= Epf ◦ uint(x)

⇔ uint(xp2) = f−1
[
Epf ◦ uint(x)

]
.
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and obtain in combination with equation (16.3) the representation

U(x1, p) = uint(x1) + βf−1
[
Epf ◦ uint(x)

]
for the multi-commodity framework.

For a general time horizon, the corresponding preference representation eval-
uates consumption recursively. To write the evaluation formally we need
some notation for the underlying choice objects. The reason is that in a
recursive evaluation general objects of choice are no longer lotteries over
consumption paths, but decision trees. While a lottery over a consumption
path only contains information of the probability that a particular event
takes place in some period t, the decision tree also contains information how
we get to that event in period t, i.e. which lottery takes place in which period
in order to give us the probability for the event in period t. As we will see
in section 16.4, the particular way how we get to an event in period t might
influence how we evaluate it. More precisely, it is possible that our evalua-
tion of a lottery in the future not only depends on the probabilities attached
to each of the outcomes, but also on the period in which the risk resolves
(an information that is part of the decision tree, but not of the resulting
probability distribution over the corresponding consumption paths).

Formally, a decision tree is a recursion of probability distributions over sub-
trees. General choice objects in the last period are lotteries pT over consump-
tion xT . In the second last period certain consumption is denoted by xT−1.
However, before uncertainty resolves, the decision maker neither knows xT−1

with certainty, nor does he know the probability distribution that he faces
at the beginning of period T which certainty. Instead, at the beginning of
period T −1 he faces a lottery over the tuple (xT−1, pT ), which we will denote
by pT−1. Observe that each tuple (xT−1, pT ) corresponds to a subtree and
pT−1 gives us the weights attached to all possible subtrees. A recursive con-
struction defining pt−1 as a lottery over tuples (xt−1, pt) for all t ∈ {1, ..., T}
gives us the desired formal representation of a decision tree in the present p0.

The general recursive evaluation of such a decision tree is as follows. Con-
sumption in the last period of a finite time horizon is simply uT (xT ) and
then

ut−1(xt−1, pt) = ut(xt−1) + f−1
t [Eptft ◦ ut(xt, pt+1)] . (16.5)

The function ut−1 represents preferences in period t−1 after the uncertainty
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with respect to t−1 has resolved. Note that each ut evaluates choices between
(sub-)trees that describe a unique future scenario with no further choices in
later periods (open loop setting).111 We will see in the next section how this
evaluation corresponds to a value function depending on states rather than
probability trees over the future.

Alternatively we can formulate our setting in a way that choice in every
period takes place before uncertainty with respect to that period has resolved.
Then, the functional Mt(pt) = f−1

t [Eptft ◦ ut(xt, pt+1)] is applied to evaluate
the lottery pt over tuples (xt, pt+1). The corresponding recursion relation can
also be written as

Mt(pt) = f−1
t [Eptft (ut(xt) + βMt+1(pt+1))] ,

specifying the value of a decision tree before uncertainty over a particular
node (period) has resolved.

If we look at the choice between certain consumption paths the expected value
operator drops out and the functions f−1

t and ft cancel. Then we recognize
that – just like in the certain×uncertain setting – the utility function ut
in equation (16.5) corresponds to our utility function uintt which describes
the decision maker’s propensity to smooth consumption over time. On the
other hand, if we simply look at an uncertain evaluation in the last period,
we recognize again that ft ◦ ut corresponds to uvNM

t . Thus the composition
ft ◦ ut expresses risk aversion in the Arrow Pratt sense.

Letting the time horizon approach infinity, we face an infinitely long and
infinitely wide decision tree in every period. See ? for a formal definition
of such an infinite decision tree. The advantage of the infinite time horizon
is that our set of choice objects becomes the same in every period.112 That

111Let me point out a similarity between the (necessity of the) recursivity in the open
loop evaluation in equation (16.5) and the (necessity of the) recursivity in a closed loop
dynamic programming equation for the standard model. In a feedback optimization with
standard preferences the value function in the next period depends on the realization
of some random variable. That dependence is based on the fact that the realization of
the random variable changes real outcomes and optimal choices in the future. In equation
(16.5) the future value function depends on the realization of the random variables because
the decision maker cares for the fact whether uncertainty has resolved earlier or later, even
if this realization does not change real outcomes and choices. The underlying intrinsic
(rather than instrumental) preference for the timing of uncertainty resolution is discussed
in section 16.4.
112Of course, the set of feasible choices can vary between periods.
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is, if P∞ denotes the set of all infinite decision trees and p∞t+1 ∈ P∞, then
also the lottery p∞t over tuples (xt, p

∞
t+1) is in P∞. Under the appropriate

stationarity conditions we can rewrite equation (16.5) as113

u(xt−1, pt) = (1− β)u(xt−1) + βf−1 [Eptf ◦ u(xt, pt+1)] . (16.7)

16.2 Disentangling Risk Aversion and Intertemporal
Substitutability

? famously developed a one commodity special case of the model in equation
(16.7).114 Let u(x) = xρ implying a CIES function over certain consumption
paths with the inverse of the intertemporal elasticity of subsitution given by
η = 1 − ρ. Moreover assume constant relative Arrow Pratt risk aversion so
that f ◦ u(x) = xα implying f(z) = z

α
ρ . We assume α, ρ > 0, an assumption

that we adopt for simplicity only for the subsequent transformation. Then
equation (16.7) becomes

u(xt−1, pt) = (1− β)xρt−1 + β
[
Eptut(xt, pt+1)

α
ρ

] ρ
α

⇔ V ∗(xt−1, pt) =
(
(1− β)xρt−1 + β [Ept (V

∗(xt, pt+1))
α]

ρ
α

) 1
ρ
, (16.8)

where V ∗ = u
1
ρ . Here, we admit α, ρ ∈ IR.

A major contributions of ? is to derive a framework for estimating this type
of preferences in the context of asset pricing. Let the probability measures
pt ∈ P∞ be generated by a stationary stochastic process (R̃t, z̃t)

∞
−∞, where

Rt ∈ [R,R]K is a vector specifying asset returns and zt ∈ IRZ captures
other random information relevant to predicting future probabilities. We
use a tilde for emphasizing the random nature of a variable. The state
of the system is specified by wealth At and the history of realized asset
returns and information variables, which is denoted by It = (Rt, zt)

t−1
−∞ ∈

It = ×t−1
i=−∞[R,R]K × IRZ . The equation of motion for the agent’s wealth is

At+1 = (At − xt)ωtR̃t (16.9)

113Note that the formulation is equivalent to u∗(xt−1, pt) = u(xt−1) +
βf∗−1 [Eptf

∗ ◦u(xt, pt+1)] with u(xt−1, pt) = (1− β)u∗(xt−1, pt) and f(x) = f∗( x
1−β ).

114In ? the authors also analyze a more general isoelastic model where risk aversion does
not satisfy the von Neumann-Morgenstern axioms.
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where ωt is a vector whose component ωk,t characterizes the share of assets
invested in the kth asset that has return R̃k,t. In this setting, the probabil-
ity distribution over future consumption derives from wealth, the stochastic
process (R̃t, z̃t)

∞
−∞, and the (optimal) choice of the control variables xt and

ωt.

Now we have an optimization problem with given equations of motions. We
replace the recursive utility function (16.8) by the value function V (At, It),
which captures the maximal achievable utility as a function of wealth At and
information It. The corresponding Bellman equation is

V (At, It) = max
xt,ωt

(
(1− β)xρt + βE

[
V ((At − xt)ωtR̃t, Ĩt+1)

α|It
] ρ

α

) 1
ρ

.(16.10)

Note that now V is a ‘regular’ value function of a dynamic programming
problem (16.10) and the choices we evaluate in period t are no longer de-
generate for periods t′ > t. Instead, we assume an optimal choice in every
period as we recursively evaluate the future.

We will show that the value function is linear in wealth and multiplicatively
separable in wealth and information. The trial solution V (At, It) = AtΦt(It)
yields the Bellman equation

AtΦt(It) = max
xt,ωt

(
(1− β)xρt + βE

[(
(At − xt)ωtR̃tΦt+1(Ĩt+1)

)α
|It
] ρ

α

) 1
ρ

⇔ AtΦt(It) = max
xt,ωt

(
(1− β)xρt + β(At − xt)

ρE
[(
ωtR̃tΦt+1(Ĩt+1)

)α
|It
] ρ

α

) 1
ρ

,(16.11)

where the second line uses that At and xt are known at time t.

The first order condition for consumption optimization, assuming an optimal
portfolio composition ω∗

t , is

ρ(1− β)xρ−1
t = βρ(At − xt)

ρ−1E
[(
ω∗
t R̃tΦt1(Ĩt+1)

)α
|It
] ρ

α

⇔ (1− β)xρ−1
t (At − xt) = β(At − xt)

ρE
[(
ω∗
t R̃tΦt+1(Ĩt+1)

)α
|It
] ρ

α

.(16.12)

Instead of solving this first order condition for xt, we use equation (16.12)



16.2 Disentangling Risk Aversion and Intertemporal Substitutability 383

and substitute it back into the (now optimized) Bellman equation (16.11)

AtΦt(It) =
(
(1− β)xρt + (1− β)xρ−1

t (At − xt)
) 1

ρ

⇔ AtΦt(It) =
(
(1− β)xρt + (1− β)xρ−1

t At − (1− β)xρt )
) 1

ρ

⇔ Φt(It) = (1− β)
1
ρ

(
xt
At

) ρ−1
ρ

. (16.13)

Equation (16.13) states that (also) the optimal consumption choice

x∗t =
Φt(It)

ρ
ρ−1

(1− β)
1

ρ−1

At ≡ Ψ(It)At (16.14)

is linear in wealth.

Note 1: Employing the linearity of consumption in wealth in equation (16.14)
to eliminate the wealth from the Bellman equation (16.11) results in a reduced
Bellman equation that implicitly characterizes the value of information Φt(It)

Φt(It) = max
ωt

([
(1− β)

Φt(It)
ρ

ρ−1

(1− β)
1

ρ−1

]ρ
+ β

[
1− Φt(It)

ρ
ρ−1

(1− β)
1

ρ−1

]ρ
E
[(
ωtR̃tΦt+1(Ĩt+1)

)α
|It
] ρ

α

) 1
ρ

,(16.15)

Thus, the trial solution indeed solves the problem as long as the equation
(16.15) has a solution.

Note2: From V (At, It) = AtΦt(It) and equation (16.13) follows

V (At, It)

xt
=
At

xt
Φt(It) =

At

xt
(1− β)

1
ρ

(
xt
At

) ρ−1
ρ

=

(
(1− β)

At

xt

) 1
ρ

.

The value function normalized by current consumption is proportional to the
wealth-consumption-ratio At

xt
rased to the power of 1

ρ
= 1

1−η
= IES

IES−1
, where

IES abbreviates the intertemporal elasticity of substitution.

We now return to the first order condition for consumption and use equa-
tion (16.13) for t + 1 to replace the unknown information part of the value
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function Φt+1(Ĩt+1) in equation (16.12), and then we use the budget con-
straint (16.9) to replace At+1, yielding

(1− β)xρ−1
t (At − xt) = β(At − xt)

ρE

[(
ω∗
t R̃t(1− β)

1
ρ

(
x̃t+1

Ãt+1

) ρ−1
ρ

)α

|It

] ρ
α

⇔ xρ−1
t = β(At − xt)

ρ−1E

[(
ω∗
t R̃t

(
x̃t+1

(At − xt)ω∗
t R̃t

) ρ−1
ρ

)α

|It

] ρ
α

⇔ 1 = βE

[(
ω∗
t R̃t

(
At − xt
xt

x̃t+1

(At − xt)ω∗
t R̃t

) ρ−1
ρ

)α

|It

] ρ
α

⇔ 1 = E

(β ω∗
t R̃t

(
x̃t+1

xt

)ρ−1
)α

ρ

|It


ρ
α

(16.16)

⇔ β−1 = E

(ω∗
t R̃t

(
x̃t+1

xt

)ρ−1
)α

ρ

|It


ρ
α

(16.17)

That is our first Euler equation. However, we have K assets and, thus, are
missing anotherK−1 equations to determine our optimal asset dynamics. To
find the missing equations we optimize the portfolio choice explicitly in equa-
tion (16.11). Using equations (16.13) and (16.9) find that this maximization
problem is equivalent to

max
ωt

E
[(
ωtR̃tΦt+1(Ĩt+1)

)α
|It
]

⇔ max
ωt

E

[(
ωtR̃t(1− β)

1
ρ

(
x̃t+1

(At − xt)ωtR̃t

) ρ−1
ρ

)α

|It

]

⇔ max
ωt

E

[(
ωtR̃t

)α
ρ

(
x̃t+1

xt

)α ρ−1
ρ

|It

]
,

as (At − xt) (eliminated) and xt (inserted) are known in t. Deriving the
first order conditions we have to keep in mind that

∑
k ωk,t = 1. Letting
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dωk = −dω1 we find

E

[(
ωtR̃t

)α
ρ
−1
(
x̃t+1

xt

)α
ρ
(ρ−1) (

R̃k,t − R̃1,t

)
|It

]
= 0 . (16.18)

Equations (16.16) and (16.18) (for k = 2, ..., K) together represent the Euler
equations. We can also combine them as follows. Multiply (16.18) by ωk,t

and sum over k = 1, ..., K yielding

E

[(
ωtR̃t

)α
ρ

(
x̃t+1

xt

)α
ρ
(ρ−1)

|It

]
− E

[(
ωtR̃t

)α
ρ
−1
(
x̃t+1

xt

)α
ρ
(ρ−1)

R̃1,t|It

]
= 0 .

By equation (16.17) it follows that

E

[(
ωtR̃t

)α
ρ
−1
(
x̃t+1

xt

)α
ρ
(ρ−1)

R̃1,t|It

]
= β

ρ
α .

Therefore we can write the Euler equations as

E

[
β

α
ρ

(
ωtR̃t

)α
ρ
−1
(
x̃t+1

xt

)α
ρ
(ρ−1)

R̃k,t|It

]
= 1 (16.19)

for k = 1, ..., K. In either form these Euler equations have been used as point
of departure for estimating ρ and α by comparing interest on individual assets
with interest gained on the market portfolio (see in particular ?, ?, Vissing-
Jørgensen & Attanasio 2003, Basal & Yaron 2004).

We first discuss the special case obtained in the intertemporally additive ex-
pected utility standard model where α = ρ. Then, equation (16.19) becomes

E

[
β

(
x̃t+1

xt

)ρ−1

R̃k,t|It

]
= 1 . (16.20)

Often, the return of an asset k is its future price Pk,t+1 plus its payoff in

dividends Dk,t+1, relative to its present price Pt. Then Rk,t =
Pk,t+1+Dk,t+1

Pk,t

and

Pk,t = E

[
β

(
x̃t+1

xt

)ρ−1

(Pk,t+1 +Dk,t+1)|It

]
= 1 .



16.2 Disentangling Risk Aversion and Intertemporal Substitutability 386

The equations state that an asset’s return is determined by its covariance
with consumption growth, or, more precisely, by it’s covariance with marginal

utility115 u′(x̃t+1)
u′(xt)

=
(

x̃t+1

xt

)ρ−1

. Here, the expression mt,t+1 ≡ β u′(x̃t+1)
u′(xt)

is also

referred to as the stochastic discount factor. It discounts future asset payoffs
depending on the state of the world. We observe from equation (16.20) by
analyzing the payoff of a risk free asset called Rf,t that

E

[
β

(
x̃t+1

xt

)ρ−1

|It

]
=

1

Rf,t

and therefore the expected value of the stochastic discount factor is

Et mt,t+1 = Et β
u′(xt+1)

u′(xt)
=

1

Rf,t

,

i.e. the inverse of the return (factor) on a certain investment.

Equation (16.20) and the idea that an asset is to be priced based on it’s
covariance with consumption is a well known result of consumption based
capital asset pricing models. However, empirical evidence has not been very
supportive of the fact that such a behavior is actually observed on asset
markets. Hansen and Jagannathan 1991 (?) have shown how the Euler
equations (16.20) provide an upper bound for the Sharpe ratio, which is a
measure for the excess return on the market portfolio per unit of market risk.
For lognormally distributed consumption and power utility (as above) this
Sharpe ratio would be bound by the product of the standard deviation of
consumption growth and η = 1 − ρ (the consumption elasticity of marginal
utility or aversion to intertemporal substitution). As data of US stocks over
the past century reveal, consumption volatility has been too low to explain
high excess return of the market portfolio over the certain intererest rate,
at least with reasonable values for the consumption elasticity of marginal
utility.116 This finding is referred to as the equity premium puzzle. If we were
to accept an unreasonably high consumption elasticity of marginal utility,
then we run straight into another asset pricing puzzle. Recall the stochastic

115Here utility characterizes utility in the sense of intertemporal aggregation, or, the util-
ity function in the model where we write aggregation in terms of utility u and intertemporal
risk aversion f .
116Which would have to be somewhere in the range from 10 to 50 in order to expand the

bounds on the Sharpe ratio sufficiently to describe the observed returns.
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Ramsey equation of section 14.5, which we will generalize further below. It

tells us that the certainty equivalent interest rate is rf = ρ+ ηµx − η2 σ
2
x

2
. If

we plug in a lower bound for ρ = 0 and derive from the same data µx = 0.018
and σx = 0.036 we find rf ≈ 0% + η1.8% − η20.06%. For a value of η = 10
which is a lower bound to the consumption elasticity of substituion needed
to explain the equity premium we find that the certain interest rate must
already be rf ≈ 12%, a value that is significantly too high. This finding is
referred to as the risk-free rate puzzle.117

In contrast to the consumption based asset pricing model resulting in equa-
tion (16.20), the simple static capital asset pricing model (CAPM) based on
mean variance analysis tells us that the return of an asset is determined by its
covariance with the market portfolio.118 Equation (16.19) shows that in the
general case with disentangled preferences the asset’s return is determined
by the covariance with both of these factors. More precisely, what counts for
the asset’s return is it’s covariance with a geometric mean (with weighting
factor α

ρ
) of marginal utilities of consumption and the return of the market

portfolio.

Finally, we return to the stochastic Ramsey equation determining the risk
free rate of interest in an uncertain world (see section 14.5). For this purpose,
let the first asset be a bond with a fixed interest rate r∗. Moreover, denote
the pure rate of time preference by δ = − ln β, the consumption growth
rate by ỹt = ln x̃t+1

xt
, and the interest gained on the market portfolio ωR by

r̃t = ln(ωtRt). The inverse of the intertemporal elasticity of substitution
generally employed to parameterize CIES functions is η = 1 − ρ. Then

117For more recent data the puzzle seems to be slightly less strong than indicated by the
cited historic US data. See Pennachi 2008 p.90 ? for the values employed here and further
sources.
118Note that the standard CAPM and the consumption based pricing model coincide

in a static setting with quadratic utility or normal asset returns. If utility is quadratic,
marginal utility is linear in consumption and (end of period) consumption is linear in the
return of the market portfolio. Then marginal utility is perfectly negatively correlated
with the return on the market portfolio and consumption based asset pricing coincides
with the CAPM approach. For general utility, normal asset returns, and a static model,
end of period consumption is perfectly correlated with the return of the market portfolio,
which, therefore, is perfectly negatively correlated with marginal utility. Once more the
asset pricing prediction coincides with the beta formula of the standard CAPM.
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equation (16.19) for k = 1 can be rewritten as

E
[
e−

α
ρ
δe(

α
ρ
−1)r̃te−η α

ρ
ỹt |It

]
= e−r∗ (16.21)

⇔ E
[
e−[

α
ρ
δ+α

ρ
ηỹt+(1−α

ρ
)r̃t]|It

]
= e−r∗

⇔ E
[
e−[(δ+ηỹt)−(1−α

ρ
)(δ+ηỹt−r̃t)]|It

]
= e−r∗ (16.22)

We can spell the equation out further if we assume that the market portfolio
return and consumption growth in t+ 1 are jointly lognormally distributed,
conditional on information at time t. Then

r∗ =
α

ρ
δ +

α

ρ
ηµyt +

(
1− α

ρ

)
µrt −

(
α

ρ

)2

η2
σyt
2

−
(
1− α

ρ

)2
σrt
2

+η2
α

ρ

(
1− α

ρ

)
covyt,rt

=
α

ρ

[
δ + ηµyt −

α

ρ
η2
σyt
2

]
+

(
1− α

ρ

)[
µrt −

(
1− α

ρ

)
σrt
2

+ η2
α

ρ
covyt,rt

]
. (16.23)

For the standard model where risk aversion and aversion to intertemporal
substitution coincide we have α = ρ and equation (16.23) collapses to

r∗ = δ + ηµyt − η2
σ2

2
σyt ,

which is the stochastic Ramsey equation that we already encountered in
section 14.5. In general, however, the certainty equivalent discount rate is
determined not only by time preference and consumption growth, but as
equations (16.22) and (16.23) show the risk free rate depends on the joint
distribution of consumption growth and return of the market portfolio. It
thereby is a sort of an arithmetic mean between the two contribution with
weight 1 − α

ρ
. The latter characterizes the difference between Arrow Pratt

risk aversion and intertemporal substitutability. The next section derives an
interpretation of the term 1 − α

ρ
as a measure of relative intertemporal risk

aversion.
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16.3 Intertemporal Risk Aversion

This section derives a measure for the difference between Arrow Pratt risk
aversion and intertemporal substitutability. This measure will have an inter-
esting interpretation of risk aversion itself. Let us recall the general stationary
representation in equation (16.6)

u(xt−1, pt) = (1− β)u(xt−1) + βf−1 [Eptf ◦ ut(xt, pt+1)] .

In section 16.1 we elaborated the intertepretation of u as characterizing the
attitude toward intertemporal consumption fluctuations and the interpreta-
tion of f ◦ u ≡ h as characterizing Arrow Pratt risk aversion. Thus, the
concavity of f = h ◦ u−1 is a measure for the difference between aversion to
intertemporal fluctuations and aversion to risk in the Arrow Pratt sense. For
example, f concave is equivalent to h being more concave than u. This rela-
tion corresponds to a possible definition of ‘more concave than’ and is based
on the fact that if f is concave then h = f ◦ u is a concave transformation of
u and thus ‘more concave’.119

An interesting alternative characterization of f is obtained by the following
axiom. Let X = XT be the space of consumption paths where T might
be infinite. Let a preferences ⪰ be represented by equation (16.6) (over
certain paths as well as probability trees of the according length). For two
given consumption paths x and x′ define the ‘best off combination’ path
xhigh(x, x′) by (xhigh(x, x′))t = argmaxx∈{xt,x′

t}u(x) for all t and the ‘worst

off combination’ path xlow(x, x′) by (xlow(x, x′))t = argminx∈{xt,x′
t}u(x) for

all t. In every period the consumption path xhigh(x, x′) picks out the better
outcome of x and x′, while xlow(x, x′) collects the inferior outcomes. We call
a decision maker (weakly)120 intertemporal risk averse in period t if and only
if for all x, x′ ∈ X holds

x ∼ x′ ⇒ x ⪰t
1
2
xhigh(x, x′) + 1

2
xlow(x, x′). (16.24)

The premise states that a decision maker is indifferent between the certain
consumption paths x and x′. Then, an intertemporal risk averse decision

119For such a definition of more concave see for example ?.
120We can define strict intertemporal risk aversion by assuming in addition that there

exists some period t∗ such that u(xt∗) ̸= u(x′
t∗) and requiring a strict preference ≻ rather

than the weak preference ⪰ in equation (16.24).
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maker prefers the consumption path x (or equivalently x′) with certainty
over a lottery that yields with equal probability either a path combining all
the best outcomes, or a path combination of all the worst outcomes. Traeger
(2010a) and Traeger (2007) spell out the above axiom as well as an alternative
formulation in terms of preferences.121 The same papers show (for the non-
stationary and the stationary case respectively) that equation (16.24) holds
if and only if the function f in the representation (16.6) is concave122.

Another useful interpretation of intertemporal risk aversion is simply as risk
aversion with respect to utility gains and losses. This interpretation is true
if preferences are represented in the form where the aggregation over time in
every recursion is additive as in the form chosen here.123 Then, the utility
as expressed by u and by v characterizes how much the decision maker likes
a particular outcome x or a particular (degenerate) situation in the future.
If the decision maker is intertemporally risk averse, he dislikes taking risk
with respect to gains and losses of such utility. Note that in difference to
the Arrow-Pratt measure of risk aversion, the function f is alway one dimen-
sional and its curvature is well defined. Thus we can use it as a commodity
independent risk measure also in a multi-commodity setting. In particular,
we can define a measure of relative intertemporal risk aversion

RIRAt(z) = −f
′′
t (z)

f ′
t(z)

z .

However, the measure RIRAt(z) depends on the choice of zero in the defini-
tion of the utility function u. That is equivalent to the fact that the measure
of relative Arrow Pratt risk aversion depends on the choice of the zero con-
sumption or wealth level (i.e. when defining a von Neumann-Morgenstern
utility index over monetary lotteries the relative risk aversion measure de-
pends on what is considered to be the zero payoff). For the generalized
isoelastic model that we discussed in the previous section where f(z) = z

α
ρ

121That is, the representation in equation (16.6) is not assumed but axiomatically derived
and xhigh and xlow are defined purely in terms of preferences without the use of u. While
Traeger (2010a) deals with the general non-stationary setting where the functions ft and
ut can be time dependent, Traeger (2007) analyzes simplifications that arise for stationary
preferences.
122Respectively strictly concave for strict intertemporal risk aversion as defined in foot-

note 120.
123See Traeger (2010a) how the same preferences can be represented by making uncer-

tainty aggregation linear at the cost of incorporating a nonlinear aggregation over time.
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we find under the assumption ρ > 0124 that RIRAt(z) = 1 − α
ρ
which coin-

cides with the proportionality factor of the new term in the discount rate in
equation (16.21).

16.4 Preference for the Timing of Risk Resolution

Let us briefly mention another characteristic of choice that is closely re-
lated to intertemporal risk aversion, respectively the disentanglement of Ar-
row Pratt risk aversion from aversion to intertemporal fluctuation. Let
λ(xt, pt+1) + (1 − λ)(xt, p

′
t+1) denote a lottery in period t that delivers xt

in period t and a future described by (the probability tree) pt+1 with proba-
bility λ and that delivers the outcome xt in period t and a future described
by p′t+1 with probability (1 − λ). Note that, however the lottery turns out,
the decision maker consumes xt in period t. We would like to compare this
first lottery to a second lottery that writes as (xt, λpt+1+(1−λ)p′t+1). In this
second lottery the uncertainty over the future does not resolve within period
t, but only in period t+ 1. Otherwise both lotteries coincide. Figure ?? de-
picts the comparison between two such lotteries for the two period setting. A

�
��

Q
QQ

�
��

Q
QQ

λ

1−λ

λ

1−λ

x x

x x

x

x

x .

⪰

decision maker with intertemporally additive expected utility preferences will
always be indifferent between the two depicted lotteries. However, in general
a decision maker might for example prefer the lottery with the earlier reso-
lution of uncertainty depicted on the left. Note that we are characterizing
an intrinsic preference for the timing of uncertainty resolution. There is no
choice that the decision maker can take after the resolution of uncertainty.
If adapting the optimal choice to resolving information leads to a better ex-
pected outcomes in the future causing a preference for an early resolution of
uncertainty we say that such preference for early resolution is instrumental
(as it is in the end simply a preference for better outcomes). An intrumental

124For ρ < 0 the function u(x) = xρ decreases and f aggregates disutility. In this case we
either have to pick a representational equivalent utility function that is strictly increasing
or switch around some of the concavity conditions on f . The above discussion assumed
that utility is strictly increasing in consumption.
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preference for early resolution of uncertainty also prevails in the standard
model. The analysis of an intrinsic preference for the timing of uncertainty
resolution goes back to ?. New is an interpretation of this finding in terms of
intertemporal risk aversion (?). For this purpose we take the special case of
the representation (16.5) where ut is stationary but ft is not.

125 Then, it can
be shown that the preference depicted in figure ?? or, in general, the pref-
erence for early resolution of uncertainty for consumption level xt as defined
by

λ(xt, pt+1) + (1− λ)(xt, p
′
t+1) ⪰t (xt, λpt+1 + (1− λ)p′t+1) (16.25)

for all pt+1, p
′
t+1 and λ ∈ [0, 1] holds if and only if the expression

ft
[
(1− β)u(xt) + βf−1

t+1(z)
]

(16.26)

is convex in z.126 There are two distinct effects driving a preference for an
early resolution of uncertainty. For the first one, assume that u(xt) = 0
and β = 1. Then the condition states that ft

[
f−1
t+1(z)

]
≡ h convex which is

equivalent to ft = h ◦ ft+1 or ft+1 more concave (less convex) than ft. The
intuitive interpretation is that a decision maker prefers and early resolution
of uncertainty in the (intrinsic) sense of equation (16.25) if intertemporal risk
aversion is increasing over time. The second effect that can drive a preference
for an early resolution of uncertainty is observed by setting ft = ft+1. Then,
u(xt) increases the welfare level at which intertemporal risk aversion in pe-
riod t is evaluated. In addition, β can either increase or decrease the welfare
level at which intertemporal risk aversion is evaluated in period t, depending
on the value of u(xt). Assume that the decision maker’s preferences exhibit
decreasing absolute intertemporal risk aversion. Then, if the effective wel-
fare level at which he evaluates the lottery in period t (incorporating u(xt)
and discounting) is large enough, he will be less risk averse evaluating the
lottery in period t than evaluating it in period t+ 1 with the same function

125Axiomatically this representation is obtained by only requiring a stationarity evalua-
tion of certain consumption paths (Traeger 2007).
126In general, equation (16.26) is the condition for the infinite time horizon setting corre-

sponding to equation (16.5). But it also holds for the two period setting depicted in figure
??. In the two period setting representation, however, the constant β is not the pure time
preference discount factor but the transformation β = β∗

1+β∗ of the pure time preference
discount factor β∗. Thus, setting β = 1 as done below only has an interpretation as a
limiting case in the infinite time horizon setting.
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f but at a lower effective welfare level. Also in this case the decision maker
would prefer an early resolution of uncertainty. In general, any combination
of intertemporal risk aversion and timing preference is possible. However, in
the case of the generalized isoelastic preferences used by ? an early resolu-
tion of uncertainty is preferred if and only if α > ρ,127 i.e. if the decision
maker is intertemporal risk averse respectively more Arrow Pratt risk averse
than averse to intertemporal consumption fluctuations. Therefore, it is a
widespread believe that a disentanglement of Arrow Pratt risk aversion and
attitude with respect to intertemporal substitution is only possible in combi-
nation with a non-trivial timing preference. However, ? points out that this
is not true in general.

There is an interesting relation between intertemporal risk aversion, the as-
sumptions of indifference to the timing of uncertainty resolution, and dis-
counting. In particular, in an open loop evaluation of the future, intertem-
poral risk aversion can devaluate future utility in a similar way as pure time
preference. Moreover, under a stationary evaluation of risk standard as-
sumption lead to the result that a decision maker can only either have a
positive rate of pure time preference or be timing indifferent. From a nor-
mative perspective the result can be used to derive a zero rate of pure time
preference simply from consistency assumptions and widespread axioms on
decision making under uncertainty. The underlying interpretation of the re-
sult is that intertemporal risk aversion has to be constant in present value
terms to satisfy indifference to the resolution of uncertainty while it has to
be constant over time in current value terms to satisfy risk stationarity.128

However, intertemporal risk aversion can only be constant in both, present
value and current value terms, if the pure rate of time preference is zero.

127With the exception of a rather special case pointed our in ?.
128Note that in the standard model risk stationarity does not add any restriction in

addition to certainty stationarity. Only with a nontrivial attitude to intertemporal risk
aversion the axiom gets its own bite.
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17 Ambiguity

This section discusses decision in the absence of (unique) probabilistic beliefs
over the future. We focus on the smooth ambiguity aversion model that is
combining aspects of the model discussed in the preceding section with a
Bayesian model of decision making. As a simple application we discuss how
the setting changes (once more) the social discount rate. We briefly discuss
an extension of the model and a sketch of another climate change related
application.

17.1 Introduction to ambiguity

Most of the literature on ambiguity is founded on the so called Ellsberg
paradox. (?) proposed a thought experiment featuring bets on drawing
colored balls from different urns that challenge the standard expected utility
model.129 A simplified version of this experiment that gets at the intuition130

is as follows. You face two different urns. You know that the first urn con-
tains 50 blue and 50 red balls. You know that the second urn only contains
blue and red balls, but you do not know their number. You can bet on draw-
ing a blue ball from one of the urns. If the ball is indeed blue you receive
$100, otherwise nothing. Ellsberg’s intuition suggested that people would
prefer to bet on drawing a blue ball from the first urn. Here, they know the
distribution of balls and that the probability of drawing a blue ball equals 1

2
.

We don’t know anything about the second urn but that it contains blue and
red balls. Thus, we can also arrive at a probability of 1

2
by the principle of

insufficient reason, i.e. because we don’t have any good reason to assume that
blue is more or less probable than red. However, the idea is that people tend
to feel different about the two urns and about a situation were the probabil-
ities are known and where they are simply assumed for lack of knowledge.
In the expected utility model probabilities are probabilities, so the different

129The experiment is conducted to yield a contradiction to Savages subjective derivation
of expected utility theory. While Ellsberg himself didn’t actually carry out the experiment,
many have done so (in various variants) later on and generally find that some significant
fraction or the participants violate the expected utility hypothesis. More than that, some
well known economists were unwilling to change their choices also after they learned that
it would violate expected utility.
130However, this simplified experiment as is would not suffice to prove the contradiction

to Savage’s axiomatization of expected utility.
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urns cannot be distinguished and neither can the two bets be distinguished.
In consequence, a strict preferences for betting on one of the urns cannot be
represented.131 We feel that a similar, possibly even more convincing, situa-
tion of ambiguity arises in the environmental economic context. For example,
specifying a (unique) probability for the climate sensitivity, or for a possible
collapse of the gulf stream seems to much harder than in the case of a coin
toss. Probably few people would contradict that there are qualitatively very
different types of probabilities. For a reason the literature started to distin-
guish a long time ago objective probabilities from subjective probabilities,
where the first refer to probabilities that are derived mostly from symmetry
reasonings of sufficiently good frequency data. Objective probabilities are
often also considered to be known probabilities, even though that is a some-
what intricate statement.132 However, the crucial distinction in economic
models of ambiguity is that individuals also evaluate expected outcomes dif-
ferently when they are attached to these different types of probabilities. One
way to approach this setting is by distinguishing objective and subjective
lotteries. Essentially, that is what Klibanoff et al. (2005) did. At the end of
the section we also discuss the idea that there might be more than just two
different classes of probabilities (objective and subjective). Before we intro-
duce the corresponding smooth ambiguity model, we give a brief mentioning
of some of the other more widespread approaches to model ambiguity.

The decision-theoretic literature has developed different concepts to deal with
situations where uncertainty is not sufficiently captured by unique probabil-
ity measures. Apart from tagging these situations with the word ambiguity,
they are also referred to as situations of Knightian uncertainty, hard or deep
uncertainty and are often contrasted with situations of risk (used to denote
the standard setting). One way to characterize non-risk uncertainty is by
extending the concept of probabilities to a form of more general set func-
tion called capacities. These set functions weigh possible events but are not
necessarily additive (in the union of disjoint events). In analogy to expected
utility theory that aggregates utility over states respectively events we can
define a way to aggregate utility over capacities. The according procedure

131The real Ellsberg paradox setting asks for slightly more sophisticated bets so that we
can as well rule out that the individuals place differing probabilities on the two urns, at
least one of which would not be 50 : 50.
132A better characterization might be intersubjectively agreed probabilities. On an indi-

vidual level, a person might be completely convinced that a particular probability is known
to him and still be off. Probably most wouldn’t classify such a probability as objective.



17.2 The smooth ambiguity model 396

is known as Choquet integration. A second way is to define an evaluation
functional that expresses beliefs in form of sets of probability distributions
rather than unique probability distributions. The first and simplest such
representation goes back to ?. Here a decision maker evaluates a scenario by
taking expected values with respect to every probability distribution deemed
possible and then identifies the scenario with the minimal expected value in
this set.133 The most general representation of this type is given by ?, ?
and, in an intertemporal framework ?. There are several equivalence results
between the Choquet approach and that of multiple priors as well as rank de-
pendent utility theory where a decision maker uses distorted probabilities in
an expected utility approach increasing the weights given to small probabil-
ity events. Axiomatically, all of these models relax the independence axiom
in one way or the other.

17.2 The smooth ambiguity model

We will focus our discussion on a recent representation result by Klibanoff
et al. (2005), and, in an intertemporal setting Klibanoff et al. (2009). The au-
thors model ambiguity as second order probability distributions that is, prob-
abilities over probabilities. The model almost resembles a standard Bayesian
decision model. The likelihood function, which delivers a probability distri-
bution given some (unknown) parameter, is identified with objective or first
order risk. The Bayesian prior, which gives the distribution over the unknown
parameter of the likelihood function, is referred to as subjective probability
or second order probability. In difference to the standard Bayesian model,
Klibanoff et al. (2005) introduce a separate characterization of ambiguity
attitude that comes into play when aggregating over second order lotteries.
Translated into notation similar to our recursive objective function in the
previous section we can define the welfare function as

V (xt, It) = u(xt) + βΦ−1

{∫
Θ

Φ
[
EΠθ(xt+1|xt,It)V (xt+1, It+1)

]
dµ(θ|xt, It)

}
.

It characterizes again the information that determines the (first and second
order) probabilities over the future. Here Π denotes first order or ‘objec-
tive’ probabilities. However, these are not known uniquely and depend on

133? give conditions under which this approach is equivalent to what is known as robust
control or model uncertainty.
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a parameter θ that is unknown and subjective. The probability measure µ
denotes the prior over the parameter θ ∈ Θ.134 The utility function u cor-
responds to the utility function of the standard model. It jointly captures
aversion to intertemporal substitutability and ‘objective’ or first order risk.
The function Φ captures additional aversion with respect to second order
uncertainty which is called ambiguity aversion. Note that for Φ linear the
model collapses to the standard Baysian model. If the objective uncertainty
measure Π is degenerate, there is a close formal similarity to the model of
intertemporal risk aversion. The welfare function ?? can be applied in the
infinite time horizon setting employing dynamic programming. The applica-
tion is similar to the model discussed in section 16.2, only that in general we
want to update the Bayesian prior as we move into the future.

We will limit our attention to a simple ‘certain×uncertain’ two period appli-
cation of the model that brings out the characteristics of the utility aggre-
gation without complicating the setting by introducing learning. Moreover,
we will return to a one commodity setting and assume once more an isoe-
lastic utility specification u(x) = xρ. Moreover we assume constant relative
ambiguity aversion corresponding to Φ(z) = (ρz)φ. Then our evaluation
functional in the first period can be written as

V (x1, I1) =
xρ1
ρ

+ β
1

ρ

{∫
Θ

[
EΠθ(x2|x1,I1)x

ρ
2

]φ
dµ(θ|x1, I1)

} 1
φ

. (17.1)

We can define a coefficient of relative ambiguity aversion similarly to the
standard coefficient of Arrow Pratt risk aversion and the coefficient of relative
intertemporal risk aversion. Here (as in the case of relative intertemporal risk
aversion), we have to be careful that the argument of our risk aggregation can
potentially be negative. In particular, for ρ < 0 the chosen isoelastic utility
function measures welfare in negative units. That was the reason why we
have included the parameter ρ in the definition of Φ(z) = (ρz)φ. That way
the argument of the isoelastic aggregator is positive and the aggregation is
well defined. However, the generalized mean now aggregates over the negative
of what really makes up welfare. Thus, if we have a parameterization φ < 1
we now generate a lower than expected outcome as the generalized mean in
positively measured units, but that turns into a lower than expected welfare
when translated back into welfare units (as done by 1

ρ
in front of the integral

134In (Klibanoff et al. 2009) axiomatization of the model the parameter space Θ is finite.



17.3 The social discount rate under ambiguity 398

that stems from Φ−1). Thus, in general we have to define the coefficient of
relative ambiguity aversion as

RAA =
Φ′′(z)

Φ′(z)
|z|

{
1− φ if ρ > 0

φ− 1 if ρ < 0 .

17.3 The social discount rate under ambiguity

We employ the extended welfare framework represented in equation (17.1) to
analyze how the social discount rate changes in a setting with ambiguity. Our
setting will be similar to the one employed to derive the stochastic Ramsey
equation in section 14.5. Consumption growth of the economy is stochastic
and governed by the growth rate g = ln x2

x1
that is assumed to be normally

distributed with g ∼ N(θ, σ2). Introducing second order uncertainty we
assume that σ2 is known while θ ∼ N(µ, τ 2) is itself random and normally
distributed.

We are interested in the rate at which consumption is discounted over the
future. We obtain this rate by analyzing the ratio of a small certain con-
sumption gain dx2 in the second period over a small consumption loss dx1 in
the first period that leaves the decision maker indifferent:

dV (x1, I1) = xρ−1
1 dx1 + β

1

ρ

1

φ

{∫
Θ

[
EΠθ(y|x1,I1)x

ρ
2

]φ
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

φ
[
EΠθ(y|x1,I1)x

ρ
2

]φ−1
EΠθ(y|x1,I1)ρx

ρ−1
2 dx2 dµ(θ|x1, I1)

!
= 0
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⇒ xρ−1
1 dx1 = −β

{∫
Θ

[
EΠθ(y|x1,I1)x

ρ
2dx2

]φ
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

[
EΠθ(y|x1,I1)x

ρ
2

]φ−1
EΠθ(y|x1,I1)x

ρ−1
2 dx2 dµ(θ|x1, I1)

⇒ dx1
dx2

= −β
{∫

Θ

[
EΠθ(y|x1,I1)

(
x2
x1

)ρ ]φ
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

[
EΠθ(y|x1,I1)

(
x2
x1

)ρ ]φ−1

EΠθ(y|x1,I1)

(
x2
x1

)ρ−1

dµ(θ|x1, I1)

⇒ dx1
dx2

= −β
{∫

Θ

[
EΠθ(y|x1,I1)e

ρ ln
x2
x1

]φ
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

[
EΠθ(y|x1,I1)e

ρ ln
x2
x1

]φ−1

EΠθ(y|x1,I1)e
(ρ−1) ln

x2
x1 dµ(θ|x1, I1)

⇒ dx1
dx2

= −β
{∫

Θ

[
eρθ+ρ2 σ2

2

]φ
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

[
eρθ+ρ2 σ2

2

]φ−1

e(ρ−1)θ+(ρ−1)2 σ2

2 dµ(θ|x1, I1)

⇒ dx1
dx2

= −βe[(1−φ)ρ2+(φ−1)ρ2+(ρ−1)2]σ
2

2

{∫
Θ

[
eρθφ

]
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

[
eρθ(φ−1)

]
e(ρ−1)θdµ(θ|x1, I1)

⇒ dx1
dx2

= −βe(ρ−1)2 σ2

2

{∫
Θ

[
eρθφ

]
dµ(θ|x1, I1)

} 1
φ
−1

∫
Θ

eθ[ρφ−ρ+ρ−1]dµ(θ|x1, I1)
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⇒ dx1
dx2

= −βe(ρ−1)2 σ2

2

{
eρφµ+ρ2φ2 τ2

2

} 1
φ
−1

[
e(ρφ−1)µ+(ρφ−1)2 τ2

2

]
⇒ dx1

dx2
= −βe(ρ−1)2 σ2

2 e[ρ(1−φ)+ρφ−1]µ

e[ρ
2φ(1−φ)+ρ2φ2−2ρφ+1] τ

2

2

⇒ dx1
dx2

= −βe(ρ−1)2 σ2

2 e(ρ−1)µe[ρ
2φ−2ρφ+φ−φ+1] τ

2

2

⇒ dx1
dx2

= −βe(ρ−1)2 σ2

2 e(ρ−1)µe[φ(ρ−1)2+(1−φ)] τ
2

2

⇒ dx1
dx2

= −βe−(1−ρ)µe(1−ρ)2 σ2+τ2

2 e[−(1−φ)(1−ρ)2+(1−φ)] τ
2

2 .

We want to express this welfare neutral trade off between a small positive
amount dx2 and a small negative amount dx1 in terms of the corresponding
(risk free) consumption discount rate r = ln dx2

−dx1
|V̄ . Moreover we define

the pure rate of time preference δ = − ln β and the consumption elasticity
of marginal utility characterizing aversion to intertemporal substitution as
η = 1− ρ. Then we obtain

r = δ + ηµ− η2
σ2 + τ 2

2
− (1− φ)(1− η2)

τ 2

2
.

Finally, note that 1 − η2 > 0 ⇔ ρ > 0 which implies 1 − φ = RAA and
similarly 1−η2 < 0 ⇔ ρ < 0 implies 1−φ = −RAA. Thus (1−φ)(1−η2) =
RAA |1− η2|. In consequence the certainty equivalent social discount rate
in the above 2 period setting with constant relative ambiguity aversion and
isoelastic utility is

r = δ + ηµ− η2
σ2 + τ 2

2
− RAA

∣∣1− η2
∣∣ τ 2
2
. (17.2)

The first two terms reflect the discount rate in the standard Ramsey equation
under certainty. The third is term −η2 σ2+τ2

2
is only a slight modification of

the well known extension to risk. On top of the immediate variance σ2 of the
growth rate itself we have in addition the variance τ 2. It is a straightforward
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consequence of making the growth process more uncertain by introducing a
prior (second order uncertainty) over some parameter of the growth process.
In the case of the normal distributions and second order uncertainty over ex-
pected growth adopted here, the variance simply adds up. The fourth term,
finally, is the interesting new contribution. It reduces the social discount rate
proportionally to the coefficient of relative ambiguity aversion and the vari-
ance of the subjective prior. In consequence, a decision maker in a situation
where he faces ambiguity with repect to baseline growth is willing to invest
into a certain projects with relatively lower productivity than is a decision
maker who just faces (first order) risk or is ambiguity neutral.

(Weitzman 2009) famously used a Bayesian decision framework to discuss
the consequences of structural uncertainty, fat tails, and catastrophic cli-
mate events. It is insightful to discuss his findings in the above framework.
Weitzman (2009) does not employ a decision theoretic framework of ambigu-
ity. So in discussing the social discount rate and the willingness to pay for the
future Weitzman relies on the first three terms in equation (17.2). The only
difference between these remaining terms and the standard stochastic Ram-
sey equation is the additional variance τ 2 in the third term on the right hand
side (standard risk term). Note more precisely Weitzman (2009) assumes that
the variance of the first order distribution rather than its expected value is
unknown, an uncertainty he loosely relates to climate sensitivity. From our
discussion in section 14.5 we know that the contribution of the stochastic
term η2 σ

2

2
is generally negligible. Instead of a doubling, a factor of 10− 100

is needed. Thus, in order to make uncertainty play a serious role in the stan-
dard model Weitzman has to increase the variance of the prior significantly.
Effectively, this is what he does in deriving what Weitzman calls a dismal
theorem. He introduces a fat tailed (improper) prior whose moments do not
exist. Consequently, the risk-free social discount rate in equation (14.5) goes
to minus infinity implying an infinite willingness to transfer (certain) con-
sumption into the future. Weitzman limits this willingness by the value of
a (or society’s) statistical life.135 Instead of tickling infinity our derivation
here which is based on Traeger (2008) introduces ambiguity aversion, i.e.
the term RAA |1− η2| τ2

2
, into social discounting, reflecting experimental ev-

135Note that Weitzman (2009) puts the prior on the variance σ rather than on the
expected value of growth. He loosely relates the uncertainty to climate sensitivity. The
above is a significantly simplified, but insightful, perspective on Weitzman’s approach –
abstracting from learning.
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idence that economic agents tend to be more afraid of unknown probabilities
than they are of known probabilities.

17.4 Epilogue

In the introduction we motivated ambiguity by pointing to the fact that there
are different types of probabilities. (Klibanoff et al. 2009) setting can be in-
terpreted as world with two different types of probabilities either objective,
or subjective. They use the Bayesian framework and identify the objective
probabilities with the likelihood function and subjective probabilities with
the prior. Now if we start to distinguish the quality of or confidence into
our priors we probably find a much wider range of classifications than two.
Moreover, it is not a priori clear that, within a period, we always face more
subjective lotteries (prior) over less subjective lotteries (likelihood function).
For example, we might have a pretty good guess of the probability distribu-
tion of atmospheric global mean temperatures over the next decades, but we
only have a very crude guess of the probability that a particular temperature
level causes us to cross a tipping point in the climate system, i.e. a point
where we change the climate system significantly and irreversibly, like with
stopping the gulf stream, or disintegrating major ice sheets. If we model such
an ambiguous regime shift, the ambiguous probability of the regime shift is
actually a function of the better known temperature distribution. It is more
convenient to turn the order of subjective and objective probabilities around
in this situation.136 Finally, we have motivated ambiguity by means of the
Ellsberg paradox and the fact that people behave in a way that cannot be
captured within the standard model. However, is it legitimate to employ such
a behaviorally founded model to address a question like the social discount
rate and a cost benefit analysis of climate change?

Traeger 2010 Traeger (2010b) addresses these questions. First, the paper
extends the idea of ambiguity aversion to a concept of aversion to the sub-
jectivity of belief with an arbitrary number of subjectivity classes of prob-
abilities. Second, the paper detaches the degree of subjectivity of a lot-
tery from there order (first or second order etc. lottery). Third, the paper’s
setting takes place in only a minimalistic deviation from the standard von
Neumann-Morgenstern axioms. The basic idea is that probabilities (or lot-

136See Lemoine & Traeger 2009 ?.
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teries) obtain a subjectivity (or confidence) label. Then we adapt the von
Neumann-Morgenstern axioms so that they only mix lotteries of the same de-
gree of subjectivity. The result is that our measure of risk aversion becomes
a function of the degree of subjectivity (or confidence) of the lottery. While
there isn’t an immediate normative reason that the degrees of risk aversion
should depend on the degree of confidence into the lottery, the framework
also shows that the von Neumann-Morgenstern axioms don’t really tell us
that we should have the same degree of risk aversion with respect to different
lotteries either, as soon as we acknowledge that there are different types of
probabilities out there. Finally, we pointed out that the smooth ambiguity
framework by Klibanoff et al. (2009) implicitly assumes that Arrow-Pratt
risk aversion (with respect to objective lotteries) is equivalent to the (inverse
of the) intertemporal elasticity of substitution. The cited paper also relaxes
this assumption.
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(2008), ‘Feedback nash equilibria for non-linear differential games in pol-
lution control’, Journal of Economic Dynamics and Control 32, 1312–
1331.

Laibson, D. (1997), ‘Golden eggs and hyperbolic discounting’, The Quaterly
Journal of Economics 112(2), 443–477.

Millner, A. (2011), ‘On welfare frameworks and catastophic climate risks’,
Working Paper.
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Appendix

A Formal Background on Dynamic Program-

ming in Discrete Time

This chapter provides a formal background for discrete time dynamic pro-
gramming. We start by explaining the equivalence between the dynamic pro-
gramming equation and an agent’s utility maximization over an infinite con-
sumption stream. We then proceed to discuss existence and characterize the
solutions to the dynamic programming problem. The chapter draws heavily
on chapters 3 (Mathematical Preliminaries) and 4 (Dynamic Programming
under Certainty) of (?) Recursive Methods in Economic Dynamics.

A.1 Two Statements of the Dynamic Optimization Prob-
lem

Consider an agent who maximizes utility over an infinite consumption stream.
In every period his choice is to either consume or to invest. If he invests kt
units of the generic consumption good in period t he receives kt+1 = f(kt)
units in the next period. The problem’s state variable is kt and consumption
ct is the control variable. Our first characterization of the dynamic opti-
mization problem is as a maximization of the infinite sum of utility payoffs
subject to the equation of motion for the stock kt:

max
{(ct,kt)}∞t=0

∞∑
t=0

βtU(ct)

s.t. ct + kt+1 ≤ f(kt),

ct, kt ≥ 0 ∀t ∈ IN,

k0 given .
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Eliminating the control the problem can be rewritten in terms of the state
variables as

max
{(kt)}∞t=0

∞∑
t=0

βtU(f(kt)− kt+1)

s.t. f(kt) ≥ kt+1 ≥ 0 t ∈ IN,

k0 given,

or, more generally, as (SP)

sup
{(kt)}∞t=0

∞∑
t=0

βtF (kt, kt+1) (A.1)

s.t. kt+1 ∈ Γ(kt) t ∈ IN

k0 ∈ K given ,

where Γ(kt) denotes the feasibility of the next period state given kt.

The dynamic programming approach restates the optimization problem in
an alternative formulation. It builds on a principle formulated by Richard
Bellman who recognized that an optimal sequence of choices satisfies: when-
ever the initial choice based on the initial state is optimal the remaining
decisions must constitute an optimal sequence of choices with regard to the
state variables that result from the first decision. This assertion translates
formally into the dynamic programming or Bellman equation

v(k) = max
c,y

[U(c) + βv(y)]

s.t. c+ y ≤ f(k),

c, y ≥ 0 . (A.2)

For the general case we write the dynamic programming equation as (FE)

v(k) = sup
y∈Γ(k)

[F (k, y) + βv(y)] ∀ k ∈ K . (A.3)

Facing a stationary utility function and an infinite time horizon the trade-off
between consuming and augmenting the state variable for the continuation
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path is identical in every period so that we dropped the time index. Here
k denotes the current stock and y denotes the stock resulting for the next
period. Equations (A.2) and (A.3) are functional equations. We will establish
that the solution maps a given state k into the value of the best achievable
infinite consumption stream. The subsequent section establishes equivalence
between the two optimization approaches (SP) and (FE).

A.2 Establishing Equivalence

We now state the precise assumptions that result in the equivalence of the
optimization problems (SP) formulated in equation (A.1) and (FE) formu-
lated in equation (A.3).137 The first assumption requires merely that the set
of feasible controls is non-empty.

Assumption 3: Γ(k) is nonempty for all k ∈ K.

The second assumption requires that the discounted sum over the instanta-
neous payoff F (kt, kt+1) converges for all feasible policy paths.

Assumption 4: For all k0 ∈ K and sequences {kt}∞t=0 satisfying kt+1 ∈
Γ(kt)∀ t ∈ IN the limit limn→∞

∑∞
t=0 β

tF (kt, kt+1) exists (it may be
plus or minus infinity).

We refer to ? for different ways to ensure that assumption 4 holds. The
assumptions guarantee that the solution to the maximization problem (SP)
are also solutions to the dynamic programming problem (FE).

Theorem 1 (SP → FE, value function): Let K,Γ, F, β satisfy assump-
tion 3 and 4. Then the function v∗(k0) solving problem (SP) in equation
(A.1) satisfies:
1. If |v∗(k0)| <∞ then

v∗(k0) ≥ F (k0, y) + βv∗(y) ∀ y ∈ Γ(k0)

and for any ϵ > 0

v∗(k0) ≤ F (k0, y) + βv∗(y) + ϵ for some y ∈ Γ(k0).

137See chapter 4.1 of ? for proofs.
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2. If v∗(k0) = ∞ then there exists a sequence yn in Γ(k0) such that

lim
n→∞

F (k0, y
n) + βv∗(yn) = ∞.

3. If v∗(k0) = −∞ then

F (k0, y) + βv∗(y) = −∞ ∀ y ∈ Γ(k0).

We are most interested in the first case where the maximized welfare from
future consumption is finite. In this case, the theorem establishes that the
maximized sum of welfare from the infinite consumption stream in problem
(SP) is arbitrarily close to satisfying the functional equation (FE). Note that
we have not established, yet, that the problem (FE) has a solution and when
this solution would be unique. If the problem function equation (FE) has a
solution, then the subsequent theorem states that it characterizes the optimal
welfare from problem (SP) under one additional condition.

Theorem 2 (FE → SP, value function): Let K,Γ, F, β satisfy assump-
tions 3-4. If the function v is a solution to problem (FE) in (A.3) and
satisfies

lim
t→∞

βtv(kt) = 0 for all feasible sequences {kt}∞0 , (A.4)

then v also solves problem (SP) formulated in equation (A.1).

We note that condition (A.4) has to hold for all feasible sequences. It plays
a similar role as the transversality condition in Pontryagin’s maximum prin-
ciple (chapter 7) and, e.g., rules out solutions to (FE) that go along with an
ever increasing borrowing against the future.138

Finally we are interested in the equivalence of the optimal policy plans {k∗}∞0
solving the two different approaches.

138? give an example of such a solution that satisfies the functional equation (A.3) but
violates the boundary (or boundedness) condition (A.4) on page 74 et seq. Exercise 4.3
on page 75 gives an alternative theorem establishing equivalence if equation (A.4) is not
satisfied for all feasible paths.
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Theorem 3 (SP → FE, policy sequence): LetK,Γ, F, β satisfy assump-
tions 3 and 4. Let {k∗t }∞0 be a feasible plan that attains the supremum
in (A.3) for initial state k0. Then

v∗(k∗t ) = F (k∗t , k
∗
t+1) + βv∗(k∗t+1), t ∈ IN.

The result states that every optimal plan {k∗t }∞0 is generated139 by the the
optimal policy correspondence G∗(k) defined as

G∗(k) = {y ∈ Γ(k) : v∗(k) = F (k, y) + βv∗(y)}.

The “inverse statement” is that any plan {k∗t }∞0 generated by the the op-
timal policy correspondence G∗ is an optimal plan (solving SP). The next
theorem establishes that this statement holds under one additional condition
(equation A.5).

Theorem 4 (FE → SP, policy sequence): LetK,Γ, F, β satisfy assump-
tions 3-4. Let {k∗t }∞0 be a feasible plan starting with initial state k0
satisfying

v∗(k∗t ) = F (k∗t , k
∗
t+1) + βv∗(k∗t+1), t ∈ IN

and

lim sup
t→∞

βtv∗(k∗t ) ≤ 0 . (A.5)

Then {k∗t }∞0 attains the supremum in problem (A.1) for initial state
k0.

A.3 Banach’s Contraction Mapping

This section introduces Banach’s fixed point theorem and closely related
mathematical results that underlie the proofs establishing existence and unique-
ness of the value function v solving problem (FE) formulated in equation

139The sequence (k0, k1, ...) is said to be generated from k0 by a policy correspondence
G if it satisfies kt+1 ∈ G(kt)∀t ∈ IN.
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(A.3). The contraction mapping approach not only helps to proofs charac-
teristics of the solution to the dynamic programming problem (section A.5),
but it also underlies one of the widely used numeric solution methods intro-
duced in chapter 6.

Recall that a map takes elements from one space into another space. A
contraction map takes elements from the space into itself and at the same
time ‘shrinks’ the distance between any two elements when mapping them to
their counterparts. In order to define such a concept of “shrinking distance”
we must be able to measure a distance between any two elements in a space.
That is possible in a metric and, in particular, in a normed space.

We will use the contraction mapping to find the solution to a function equa-
tion. Thus, in our case the elements of the space will be functions and the
contraction map will map functions into functions. In our main application,
the elements will be bounded functions on X ⊆ IRl. The space X will cor-
respond to the state space, and the functions on X will be candidates for
the value function. To apply the contraction mapping theorem, we need to
introduce a distance measure, i.e., a metric on our set of bounded functions
B(X). We will define our metric ρ using the supremum norm on B(X)140

ρ(f, g) = ∥f − g∥∞ = sup
x

|f(x)− g(x)|,

which measures the distance of any two functions by the supremum of the
absolute of the pointwise differences.

We can show that the set of bounded functions on X ⊆ IRl equipped with the
supremum norm is a Banach space, i.e. a complete normed vector space.141

Similarly, the subspace of all bounded and continuous functions equipped
with the supremum norm is a Banach space. Completeness is of great inter-
est to us because we will prove the existence of a solution to our dynamic
programing problem as the limit of the repeated application of a contracted

140A metric ρ satisfies the following three properties: (i) ρ(f, g) = 0 ⇔ f = g (two
different elements cannot have a zero distance), (ii) ρ(f, g) = ρ(g, f) (symmetry), and (iii)
ρ(f, g) = ρ(g, f) (triangle inequality). A norm induces a metric by defining the metric as
the norm of the difference of two elements.
141A metric space is complete if every Cauchy sequence converges to an element in the

space. If X is compact, boundedness is trivial because of continuity. For details see
theorem 3.1 of ?, though Stokey and Lucas look at the subspace of bounded and continuous
functions.
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map. Only if the space is complete, we know that the limit of this sequence
actually exists (and is in the same space sharing the same properties as the
other functions).

Once we established that our space is complete metric we can forget about
the precise structure for the moment. Let (S, ρ) be an arbitrary metric
space, i.e. a space S equipped with a metric ρ. A map T : S → S on a
metric space (S, ρ) is a contraction mapping (with modulus β) if for some
β ∈ (0, 1) : ρ(Tv, Tv′) ≤ βρ(v, v′) ∀ v, v′ ∈ S.142 A fixed point v∗ ∈ S of a
map T : S → S is a point that satisfies Tv∗ = v∗.

Theorem 5 (Banach’s Contraction Mapping of Fixed Point Theorem):
If (S, ρ) is a complete metric space and T : S → S is a contraction map-
ping with modulus β, then
i) T has exactly one fixed point v∗ in S, and
ii) for any v0 ∈ S: ρ(T nv0, v

∗) ≤ βnρ(v0, v
∗), n ∈ IN.

xPart ii) of the theorem tells us that iterative application of a contraction
map will bring us arbitrarily close to its fixed point (from any starting point).

We return to our case where the elements of the metric space are bounded
functions. The following theorem helps us to verify that a map is a con-
traction. Maps that take functions to functions are frequently referred to as
operators.

Theorem 6 (Blackwell’s sufficient conditions for a contraction):
Let X ⊆ IRl and let B(X) be the space of all bounded functions f :
X → IR with the supremum norm. Let T : B(X) → B(X) be an
operator satisfying

a. (monotonicity) f, g ∈ B(X) and f(x) ≤ g(x) ∀x ∈ X imply

Tf(x) ≤ Tg(x) ∀x ∈ X

b. (discounting) ∃β ∈ (0, 1) such that for all f ∈ B(X):

[T (f + a)] (x) ≤ Tf(x) + βa ∀a ≥ 0, x ∈ X.

Then T is a contraction with modulus β.

142We follow (?) definition of the contraction mapping (see p. 50 for the theorem below).
Sometimes, a contraction mapping is defined weaker and the existence of a (uniform) β
characterizing the contraction as above is referred to as a uniform contraction.
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A.4 Applicability of the Contraction Mapping

This section discusses how we employ the contraction mapping theorem to
prove the existence of a solution to the dynamic programming problem (FE)
formulated in equation (A.3). For this purpose we define the following map
T taking a function v on X into the following function

Tv(k) = max
y∈Γ(k)

[F (k, y) + βv(y)] for all feasible k.

This map is widely referred to as the Bellman operator. Before we even
check whether T is a contraction mapping we have to verify that Tv is again
an element of our original space. For the case of bounded functions the
case is straight forward, we simply have to bound F or, equivalently, require
continuity and assume compactness of Γ. If we are seeking a continuous value
function, we have to make sure that Tv is continuous if v is continuous.

Let C(X) denote the set of all continuous functions on X. Before applying
the fixed point theorem to T we have to verify that if v ∈ C(X) then Tv ∈
C(X). The affirmative answer will depend on our assumptions with respect
to the correspondence Γ : X → X, describing feasibility constraints, and
the return function F . Clearly, if F is continuous the function F (k, y) +
βv(y) is continuous. The question is whether the maximized function stays
continuous. The answer is stated below in the Theorem of the Maximum.
We state if for the general form that contains our particular problem in the
case where f(k, y) = F (k, y) + βv(y).

Let the function h be defined by the maximization

h(x) = max
y∈Γ(x)

f(x, y). (A.6)

If the maximum is attained, the set of values y attaining the maximum

G(x) = {y ∈ Γ(x) : f(x, y) = h(x)} (A.7)

is nonempty. The following theorem establishes restrictions on f and Γ such
that the function h and the correspondence G vary continuously in x.

Theorem 7 (Theorem of the Maximum): Let X ⊆ IRl and Y ⊆ IRm,
let f : X × Y → IR be a continuous function, and let Γ : X → Y be
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a compact valued and continuous143 correspondence. Then the func-
tion h : X → IR defined in equation (A.6) is continuous, and the
correspondence G : X → Y defined in equation (A.7) is nonempty,
compact-valued, and upper hemi-continuous.

If in addition the correspondence Γ is convex-valued and the function f is
strictly concave in y, then G is single-valued. This fact will translate into
an according theorem to establish uniqueness of the policy function in the
dynamic programming context. In particular, the Theorem of the Maximum
establishes that Tv ∈ C(X) if v ∈ C(X).

We proceed to show that Blackwell’s conditions (Theorem 6) for a contraction
mapping apply to the Bellman operator T . We start by showing monotonic-
ity. For all f, g ∈ B(X) with f(k) ≤ g(k) ∀k ∈ X we have

[F (k, y) + βf(y)] ≤ [F (k, y) + βg(y)] ∀k, y feasible

⇔ max
y∈Γ(k)

[F (k, y) + βf(y)] ≤ max
y∈Γ(k)

[F (k, y) + βg(y)] ∀k feasible

⇔ Tf(k) ≤ Tg(k) ∀x ∈ X.

We show that discounting is satisfied as by Assumption 6 we have β ∈ (0, 1)
and for all f ∈ B(X) and for all feasible k

[T (f + a)](k) = max
y∈Γ(k)

[F (k, y) + β(f(y) + a)]

= max
y∈Γ(k)

[F (k, y) + βf(y)] + βa

= Tf(k) + βa.

Hence, the Bellman operator defines a contraction mapping on the Banach
(complete and metric vector) space of all bounded functions.

The, property ii) of the contraction mapping theorem states that repeated
application of the contraction mapping on any initial guess of the function
brings us closer and closer to the fixed point, i.e., the value function solving
(FE). We close the present section with a theorem ensuring not only that
the value function converges from its initial guess to the fixed point, but that
also the optimal control converges.

143A correspondence is continuous if it is upper and lower hemi-continuous, see ?.
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Theorem : Let X ⊆ IRl and Y ⊆ IRm, let f : X × Y → IR be a continuous
function, and let Γ : X → Y be a nonempty, compact- and convex
valued, and continuous correspondence with graph A.144 Let {fn} be a
sequence of continuous (real valued) functions on A. Assume that for
each n and x ∈ X the function fn(x, ·) is strictly concave in its second
argument. Assume that f has the same properties and that fn → f
uniformly (in the sup norm). Define the functions

gn(x) = argmax
y∈Γ(x)

fn(x, y), n ∈ IN and

g(x) = argmax
y∈Γ(x)

f(x, y).

Then gn → g pointwise. If X is compact, then gn → g uniformly.

A.5 Existence of the Dynamic Programming Solution

This section proofs the existence and uniqueness of a solution to the dynamic
programming equation (FE) under the assumption that F is continuous and
bounded and future value is discounted. We restate the corresponding func-
tion equation

v(k) = max
y∈Γ(k)

[F (k, y) + βv(y)] with 0 ≤ β < 1 . (A.8)

We denote the correspondence mapping present states into feasible future
states by Γ : X → X with graph A. The instantaneous payoff function is
F : A → IR. Existence and uniqueness of a solution require the following
sufficient conditions on Γ and F .

Assumption 5: X ⊂ IRl is convex and Γ : X → X is nonempty, compact-
valued and continuous.

Assumption 6: The function F : A → IR is bounded and continuous and
0 ≤ β < 1.

144The graph A of a correspondence Γ : X → Y is defined as A = {(x, y) ∈ X × Y : y ∈
Γ(x)}. In equation (A.6) f is a real valued function on the graph of Γ.
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Note that assumptions 5-6 imply assumptions 3-4. Moreover, by Theorems 1-
4 the solution of the functional equation also solves the optimization.145 We
define the Bellman operator T on C(X) by

T v(k) = max
y∈Γ(k)

[F (k, y) + βv(y)] . (A.9)

The previous section established that, under Assumptions 5 and 6, the Bell-
man operator is a contraction mapping. Therefore, Banach’s Fixed Point
Theorem (Theorem 5) and the Theorem of the Maximum (Theorem 7) de-
liver the following result.

Theorem 8 (Unique Solution of FE) : LetK,Γ, F, β satisfy Assumptions
5-6. Let C(K) be the space of bounded and continuous real valued
functions over K ⊂ IRl equipped with the supremum norm. Then

i) The operator T defined in equation (A.9) maps C(K) into itself.

ii) The operator T defined in equation (A.9) has a unique fixed point
v ∈ C(K).

iii) For all v0 ∈ C(K) it is ∥T nv0 − v∥ ≤ βn∥v0 − v∥, n ∈ IN

iv) Given v, the policy correspondence G : X → X defined by

G(k) = {y ∈ Γ(k) = F (k, y) + βv(y)} (A.10)

is compact-valued and u.h.c.

The theorem ensures a solution to our dynamic programming problem. More-
over, Theorem 2 shows that our solution to the dynamic programming prob-
lem (FE) is also a solution to the maximization problem (SP) of the infinite
sum of future payoffs. Thus, Theorems 2 and 8 establish that under as-
sumptions 5-6 the supremum function of problem (SP) in equation (A.1)
is bounded an continuous. Adding Theorem 4, we have established that
there exists at least one optimal plan and that any plan generated by the
(nonempty) correspondence G is optimal.

145The transversality condition is not needed because F ≤ B is bounded so that v is
bounded by a converging geometric sum to v ≤ B

1−β implying lim
t→∞

βtv(kt) = 0 so that the

transversality condition is satisfied.
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A.6 Further Properties of the Solution

This section analyzes additional assumptions on the primitives that ensure
additional properties of the value function v and the policy correspondence
G. We start by characterizing an increasing value function.

Assumption 7: For each y the function F (·, y) is strictly increasing in each
of its first l arguments.

Assumption 8: Γ is monotone: k < k′ implies Γ(k) ⊂ Γ(k′).

Adding these assumption, we find that the value function is strictly increasing
in the state.

Theorem 9 (strictly increasing v): Let K,Γ, F, β satisfy assumptions 5-
8 and let v be the unique solution to equation (A.8). Then, v is strictly
increasing.

Next, we seek conditions under which the value function is strictly concave
and the policy correspondence is single valued, i.e., a function.

Assumption 9: F is strictly concave: For any 0 < θ < 1 and (k, y), (k′, y′) ∈ A:

F [θ(k, y) + (1− θ)(k′, y′)] ≥ θF (k, y) + (1− θ)F (k′, y′)

and the inequality is strict if k ̸= k′.

Assumption 10: Γ is convex: For any 0 ≤ θ ≤ 1 and k, k′ ∈ K:

y ∈ Γ(k) and y′ ∈ Γ(k′) ⇒ θy + (1− θ)y′ ∈ Γ[θk + (1− θ)k′] .

Assumption 10 implies that for each k ∈ K the set Γ(k) is convex and
that there are no ‘increasing returns’. Since K is convex by Assumption
assumption is equivalent to assuming that the graph A is convex.

Theorem 10: Let K,Γ, F, β satisfy assumptions 5-6 and 9-10 and let v sat-
isfy equation (A.8) and G satisfy equation (A.10). Then, v is strictly
concave and G is a continuous and single-valued function.
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We note that the proof of these theorems employs the fact that the operator
T preserves certain properties.

Finally, it would be convenient to establish differentiability properties of the
value function. For example, in the one-sector growth model from section
section A.1

v(k) = max
0≤y≤f(x)

U [f(k)− y] + βv[y]

differentiability of v allows us to write the maximization condition as

U ′[f(k)− g(k)] = βv′[g(k)] .

Note that the one sector growth problem falls into the category of bounded
problems analyzed here if we add the assumptions that f(0) = 0 and the
existence of k̄ > 0 such that k ≤ f(k) ≤ k̄ ∀ 0 ≤ k ≤ k̄ and f(k) < k∀ k > k̄.

For continuous differentiability of the value function we add an assumption
on the continuous differentiability onto our objective function F .

Assumption 11: F is continuously differentiable on the interior of A.

Theorem 11 (Differentiability of v): Let K,Γ, F, β satisfy assumptions
5-6 and 9-11 and let v satisfy equation (A.8) and g satisfy equation
(A.10). If k0 ∈ int K and g(k0) ∈ int Γ(k0), then v is continuously
differentiable at k0. The derivatives are given by

vi(k0) = Fi[k0, g(k0)], i = 1, ..., l.

Whereas it is straight forward to establish differentiability of the value func-
tion v, conditions ensuring twice differentiability and, thus, differentiability
of g are very strong, see ?.

B The Basics of Ordinary Differential Equa-

tions

The objective of this chapter is to provide sufficient background in differential
equations to enable readers unfamiliar with this topic to understand and use
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the subsequent chapters on optimal control. We begin by introducing several
basic terms and results in the field of ordinary differential equations (ODEs),
and then discuss phase portrait analysis using examples. We then discuss the
use of linear approximations to non-linear differential equations, emphasizing
the role of these approximations in determining the stability of a steady state.

Continuous time optimal control models use differential equations to describe
the change in the state variable, and an integral to describe the objective.
The analysis of these models requires a basic understanding of ODEs. Many
optimal control models, particularly those that are designed for qualitative
analysis, involve a single state variable. The necessary conditions for opti-
mality in these scalar models can be written as a pair of ordinary differential
equations, together with boundary conditions. Two-dimensional systems
of differential equations can be analyzed qualitatively, using phase portrait
analysis.

Some interesting dynamic models do not involve optimal control. Those
problems can be studied using the methods described here. We provide two
examples of such problems

B.1 Elements of ODEs

An ordinary differential equation is an equation that involves and ordinary
(as distinct from a partial) derivative. For example,

g

(
y, x,

dx

dy

)
= 0

is an ODE. In many cases of interest, we can write the derivative as a
function of x,y, in which case we have an explicit ODE. Often, in models
involving optimal control, the dependent variable, here y, is time, denoted t.
In these cases, the ODE takes the form

ẋ ≡ dx

dt
= f (x, t) . (B.1)

A dot over a variable indicates the total derivative of that variable with
respect to time. The solution to an ODE is a family of curves, xt = ϕ (t),
whose derivative satisfies the original equation, i.e.

dϕ

dt
= f (ϕ (t) , t) .
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In many cases it is not possible to find the explicit form of the function
ϕ. However, in certain special cases, a known solution exists. There are
procedures for finding solutions in special types of problems. The sim-
plest circumstance is where the function f is multiplicatively separable, i.e.
f(x, t) = b(x)c(t), so that we can write the differential equation as

dx

b(x)
= c(t)dt.

By integrating both sides of this identity, we obtain a solution of x in terms
of an integral. This integral typically involves a constant of integration. For
example, if b(x) = x and c(t) = c, the differential equation is linear with
constant coefficient and we can write it as

dx

x
= cdt. (B.2)

Integrating this equation gives

lnx = ct+ A =⇒ x = aect,

where A is the unknown constant of integration and a = exp(A). The
solution is a family of curves, because it depends on the parameter a, which
can take any value.

We check the solution by differentiating it and confirming that the result
satisfies the original differential equation:

dx

dt
=
d (aect)

dt
= caect = cx,

as required. A common approach to solving differential equations is to
“guess” the form of the solution, substitute this guess into the differential
equation, and then observe what must be true in order for the guess to be
correct. For example, if we guess that the solution to equation B.2 is of the
form x = aea1t, then upon substitution of this guess into the original ODE
we find that

dx

dt
=
d (aea1t)

dt
= a1ae

a1t = a1x.

This procedure shows that it must be the case that a1 = c. As this example
suggests, the guess is not random. We use this method when we know, or
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at least have a good idea of the form of the solution, and need only to learn
something specific about this solution; here, the specific element we want to
learn is the value of a1. We use this method of (informed) guessing several
times in subsequent chapters.

A given value of x at a particular time, t, is known as a boundary value.
When t = 0 it is usually referred to as an initial condition. In the example
above, if we know that x(7) = 4, we can substitute this information into the
solution to obtain 4 = ae7c to obtain a = 4

e7c
, and then write the solution as

x(t) = 4e(t−7). This example shows how a boundary condition determines
the value of the constant of integration. The solution to an ODE with a
boundary condition is a function, rather than a family of functions. This
solution is often called a path; the graph of the solution, as a function of
time, is a curve in the (t, x) plane. When we want to indicate a path that
goes through the point (t0, x0) we denote the solution as x(t) = ϕ (t; t0, x0).

We now return to the general ODE, equation B.1. This equation is au-
tonomous if and only if f () is independent of t, i.e. when ẋ = f(x). In most
cases where we care about a steady state, we are dealing with autonomous
equations. A steady state, denoted x∞, is a value of x at which ẋ = 0, i.e.
it is a root of the algebraic (not differential) equation f(x) = 0. In the case
where f is linear in x there is a single steady state, but for non-linear f there
can be multiple steady states.

There are three types of stability in this setting. A steady state x∞ is said
to be stable if trajectories that begin close to the steady state remain close.
Formally, for all ε > 0 and t0 ≥ 0, there exists δ (ε, t0) such that

|x0 − x∞| < δ =⇒ |ϕ (t; t0, x0)− x∞| < ε.

A steady state is asymptotically stable if all paths that begin close to the
steady state eventually become and remain arbitrarily close to the steady
state. Formally, there exists δ such that

|x0 − x∞| < δ =⇒ Limt→∞ϕ (t; t0, x0) = x∞.

Asymptotic stability is stronger than stability, because the former implies
that the path approaches the steady state, whereas the latter means only
that the path remains close to the steady state. For example, a path that
remains a constant distance from its steady state without approaching the
steady state is stable but not asymptotically stable. A steady state is globally
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asymptotically stable if the path approaches the steady state regardless of the
initial condition. Global asymptotic stability implies that there is a unique
steady state.

We have defined the three types of stability in the context of a scalar problem,
but the same definitions apply when considering a system of ODEs, with
n > 1 variables. There, however, we need to recognize that the neighborhood
of a steady state is an n−dimensional set rather than an interval on the real
line. When we apply the test for stability we need to consider all initial
conditions in the neighborhood of a steady state. For example, let x be
an n−dimensional vector of state variables, f a vector of functions, with
ẋ=f(x), and let x∞ be a steady state. In order for x∞ to be asymptotically
stable (for example), it must be the case that for all t0 ≥ 0, there exists δ
such that√√√√ n∑

i=1

(xi0 − xi∞)2 < δ =⇒ Limt→∞ϕi (t; t0,x0) = xi∞ for all i.

The term to the left of the inequality is the Euclidean distance between
the initial condition x0 and the steady state x∞. The inequality in the
hypothesis states that the Euclidean distance between the initial condition
and the steady state is small. The implication of the hypothesis is that in the
limit each element of the vector converges to its corresponding steady state,
which of course is equivalent to stating that the Euclidean distance between
the state and the steady state approaches 0.

In most cases we will be interested in two-dimensional systems of autonomous
ODEs, i.e. those of the form

ẋ = F (x, y) and ẏ = G(x, y).

The variables x and y might be the biomass of two stocks of fish that interact,
e.g. as predator and prey. In optimal control settings, one variable is
typically the state variable, such as the stock of fish, and the other variable
might be the shadow value of the stock, or the optimal harvest. We have
the following existence theorem for the initial value problem, in which the
boundary conditions are specified at the same point time, which without loss
of generality can be taken as the initial time. Later we will be concerned
with other types of boundary value problems, such as those arising in an
optimal control context.
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Theorem 12: If the functions F and G are continuous, bounded, and with
continuous first derivatives, then for every initial condition x(t0) = x0
and y(t0) = y0 there exists a unique solution to the system that satisfies
this initial condition. The solution might be bounded, or unbounded.
In the latter case, the Euclidean norm

√
(x2t + y2t ) → ∞ as t→ ∞.

B.2 Phase portrait analysis

We will repeatedly use phase portrait analysis to study the qualitative fea-
tures of a pair of differential equations. The idea is as follows. Given
an initial value, the solution to the pair of differential equations is a pair of
functions xt = ϕ (t; t0, x0, y0) and yt = ψ (t; t0, x0, y0). Note that the bound-
ary condition specifies the value of x and y at a time t0. We can graph
these paths in (x, y, t) space. The triple (ϕ (t; t0, x0, y0) , ψ (t; t0, x0, y0) , t) de-
scribes a curve in three dimensional space, intersecting the point (x0, y0, t0).
Without loss of generality we can set t0 = 0, so that the curve starts on the
(x, y) plane, where t = 0. We can project this curve on to the (x, y) plane,
obtaining a curve in two dimensional space. This curve is referred to as
a trajectory; it is the projection of the path in three dimensions on to the
two-dimensional (x, y) plane. The family of all such trajectories, i.e. for
all initial conditions, is called the phase portrait. The remarkable fact is
that we can obtain the phase portrait using information about the primitive
functions, F and G, without having to solve the differential equations. In
view of the importance of this technique, we illustrate it using two examples,
of increasing complexity.

An isocline is a set of points, typically a curve or a set of curves, at which ẋ
or ẏ is constant. We are particularly interested in two isoclines, one where
ẋ = 0 and the other where ẏ = 0. Along such an isocline, x or y is constant,
because its time derivative is zero. We refer to these as the 0-isoclines, or
when the meaning is clear, simply as the isoclines.

For the first example (taken from Clark (cite)) let

ẋ = y2 and ẏ = x2.

We use this example to illustrate the recipe for drawing the phase portrait.
The simplicity of the example makes it easy to follow the steps of the recipe.
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The first step is to find the 0-isoclines. For this example, the ẋ = 0 isocline
is simply the x axis (where y = 0) and the ẏ = 0 isocline is the y axis (where
x = 0). These two isoclines intersect once and therefore divide the (x, y)
plane into four isosectors, which in this example happen to be the orthants of
the plane. More generally, the isoclines might intersect more than once, and
therefore might divide the plane into several regions. Also, more generally
a particular isocline might consist of more than a single curve, in which case
the division of the plane is more complex. The intersection of the 0-isoclines
determines the steady states. In this example, there is a single steady state,
(0, 0). At any other point, the trajectory changes over time.

The second step is to include directional arrows in the figure. Recall that
these trajectories are the projections of a path in three dimensional space, on
to the (x, y) plane. The convention is that an arrow pointing East indicates
that x is increasing over time, whereas an arrow pointing West indicates
that x is decreasing over time. Similarly, an arrow pointing North indicates
that y is increasing over time, and an arrow pointing South indicates that
y is decreasing over time. Figure 1 shows the isoclines and the directional
arrows for our first example.

We can determine by inspection the direction of the arrows, but for the pur-
pose of more difficult problems it is important to understand the procedure.
At any point on the ẋ = 0 isocline x is not changing over time, but for points
on either side of the isocline ẋ > 0. Therefore, at all points above and below
the isocline, the East-West arrow points East, indicating that x is increasing
over time. The idea is that we examine the value of the function F (x, y) in
the neighborhood of the isocline in order to determine the change in x on ei-
ther side of the isocline. For this example, a North-South arrow through any
point off the x axis (where ẏ = 0) points North, regardless of the isosector;
for any point off the y axis (where ẏ = 0) an East-West arrow points East,
regardless of the isosector. Therefore, every trajectory follows a North-East
path. A useful convention is to connect the base of the East-West and the
North-South arrow in each isosector.

The slope of a trajectory though any point is given by

dy

dx
=
G (x, y)

F (x, y)
=
x2

y2
(B.3)

Figure 1 shows three trajectories beginning in the third quadrant. The
middle trajectory is a line through the origin with slope 1. Trajectories
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through points on this line below the origin converge to (0, 0). Trajectories
through points on this line above the origin diverge to (∞,∞), as does any
trajectory beginning off this line. As a trajectory crosses the ẋ = 0 isocline
(here the x axis), its slope is infinite, and as a trajectory crosses the ẏ = 0
isocline (here the y axis) its slope is 0. The two outer trajectories illustrate
these features.

For this example, we can obtain an explicit solution to a trajectory, by solving
the ODE equation B.3. Equation B.3 implies

y2dy = x2dx =⇒
∫
y2dy =

∫
x2dx =⇒

y3

3
=
x3

3
+ c̃ =⇒ y =

(
x3 + c

) 1
3 ,

where c is the constant of integration multiplied by 3. To find the value of
y for a given value of x, of a trajectory that begins at (x0, y0) we solve

y0 =
(
x30 + c

) 1
3 =⇒ c = y30 − x30 =⇒

y =
(
x3 +

(
y30 − x30

)) 1
3

For slightly more complicated systems we cannot obtain the solution in closed
form, but we have no need to do so if our goal is merely to determine quali-
tatively how the trajectory changes over time.

The discussion above leads to an important point: trajectories do not cross.
To confirm that trajectories cannot cross outside the steady state (defined
as a root of F (x, y) = G(x, y) = 0) we show in Figure 2 a circumstance
where they do cross, and explain why that circumstance is impossible. The
figure shows the isoclines (the solid curves) for an unspecified system, for
which the unique steady state is at (x∞, y∞). Here there are four isosectors.
For this example, trajectories above the ẋ = 0 isocline are increasing, and
those below the isocline are decreasing, as the arrows indicate. The North-
South arrows show the change in y in the different isosectors. The figure
also shows an impossibility, a case where two trajectories, the dashed curves
labelled (1) and (2), cross at point a, which is not a steady state. The slope

of a trajectory through point a has the slope G(x,y)
F (x,y)

. Any trajectory through

a has this slope, a single number, or infinity if F (x, y) = 0. The figure
however shows that there are two trajectories, with different slopes, as must
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be the case if the trajectories cross. Therefore, the situation shown in the
figure, where trajectories cross outside of a steady state, cannot occur.

Trajectories that approach or emanate from a state do not cross either, but
they might appear to do so. The trajectories labelled (iii) and (iv) approach
the steady state as t→ ∞, but they do not cross. For other types of dynamic
systems there are unaccountably many trajectories that approach or diverge
from the steady state, but these do not cross either.

We now consider the second example of a phase portrait, a predator-prey
model. The dynamic system is

prey: ẋ = (A−By − ωx)x

predator: ẏ = (Cx−D − µy) y

where x is the biomass of prey and y is the biomass of predators. All
parameters are positive. For example, B > 0 means that an increase in the
biomass of predators decreases the growth rate of the prey; C > 0 means
that an increase in the biomass of prey increases the growth of predators; ω
is a measure of congestion: as the biomass of prey increases, members of the
population face increased competition for food and other resources, so the
growth rate of the population falls; µ > 0 means that there is competition
amongst the predators for prey, a kind of congestion. A special case of this
model, where ω = µ = 0, is known as the Volterra-Lotke system.

Figure 3 shows the phase portrait for the case where D
C
> A

ω
. We now

describe its construction. Recall that the first step of the exercise is to find
and graph the 0-isoclines. We have

ẋ = 0 =⇒ x = 0 or A−By − ωx = 0

ẏ = 0 =⇒ y = 0 or Cx−D − µy = 0.

Each equation has two 0-isoclines. Figure 3 shows the graph of A−By−ωx =
0, denoted as the line L, and the graph of Cx − D − µy = 0, denoted as
the line M . The slopes of these lines follows from the assumption that the
parameters are positive, and the relative positions of the x intercepts follows
from the assumption that D

C
> A

ω
. Figure 4 shows the phase portrait when

that inequality is reversed.

The second step is to find the directional arrows. Again, due to the simplicity
of the example, this is easy to do by inspection. However, we proceed a bit
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more systematically in order to demonstrate a method that is useful for more
complicated models. In the interior of the positive orthant (i.e. not including
the axes) we know that ẋ = 0 only on the line L. We want to know how
the magnitude of ẋ changes as we move from a point slightly to the left to a
point slightly to the right of this line. We therefore examine the derivative

∂ẋ

∂x |L
= (A−By − ωx)− ωx = −ωx < 0,

where the second equality follows from the fact that we are evaluating the
derivative on L, where A − By − ωx = 0. Therefore, we know that ẋ is
decreasing in x in the neighborhood of L. Because ẋ = 0 on L, it must be
the case that ẋ > 0 slightly to the left of this line, and ẋ < 0 slightly to the
right of this line. We also know that ẋ never changes sign in the positive
orthant, off the line L. We therefore conclude that ẋ > 0 everywhere to the
left of this line, and ẋ < 0 everywhere to the right of this line. The arrows
pointing East below L and pointing West above L reflect this information.
We use exactly the same procedure to determine the East-West directional
arrows in Figure 4; the only difference is that there are four rather than three
isosectors there. It is important to show directional arrows in each isosector.

We could also have determined the directional arrows by investigating the
change in ẋ as we increase y (rather than x) in the neighborhood of L. That
is, we could have evaluated

∂ẋ

∂y |L
= −Bx < 0.

Using the same reasoning as above, we would then conclude that every point
in the positive orthant above L, ẋ < 0 and at every point below L, ẋ > 0.
In other words, we obtain the same information by examining the partial
derivative of ẋ with respect to either x or y. In some cases one derivative
is easier to evaluate than the other, but in this case, both derivatives are
simple.

We follow the same procedure to determine that ẏ < 0 in the positive orthant
above the isocline labelledM , and ẏ > 0 below this isocline. We draw in the
North-South directional arrows in each isosector in Figures 3 and 4. Again,
we connect the directional arrows at their base.
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We also include directional arrows for trajectories crossing the isoclines. Re-
call that the slope of a trajectory is

dy

dx
=
ẏ

ẋ
=

(Cx−D − µy) y

(A−By − ωx)x
.

A trajectory that crosses the line L has an infinite slope because the denom-
inator of the derivative is 0. In Figure 3, every trajectory that crosses the
line L lies above the line M , where ẏ = 0. Therefore, such a trajectory is
vertical, pointing South.

In both cases, D
C
> A

ω
and D

C
< A

ω
, one steady state is x = 0 = y and a second

steady state is x = A
ω
, y = 0. If a population begins with x = 0 < y, it

converges to the steady state x = 0 = y; in the absence of prey, the predators
die out. The directional arrow on the y axis contains this information. If a
population begins with x > 0 = y, the population converges to A

ω
, the steady

state of the prey in the absence of predators, also known as the carrying
capacity of the stock. The directional arrow on the x axis contains this
information. Both of these steady states are unstable and therefore also not
asymptotically stable.

Recall that in a multidimensional context, stability and asymptotic stabil-
ity requires that paths from all initial conditions in the neighborhood of the
steady state remain close to (under stability) or converge to (under asymp-
totic stability) the steady state. In the case of the (0, 0) steady state, there
are some initial conditions in the neighborhood – i.e. those on the y axis –
from which trajectories converge to the steady state. But there are other
initial conditions, – i.e. all those off the y axis – from which trajectories
do not converge to this steady state. Therefore (0, 0) is an unstable steady
state, as is

(
A
ω
, 0
)
. We study the stability of the interior steady state in

Figure 4 using material in the next section.

B.3 Linear approximations

By examining the linear approximation to a system of non-linear ODEs in
the neighborhood of a steady state, we obtain information about the stability
of that steady state under the original nonlinear system. This procedure
uses the Theorem of the First Approximation, which gives conditions under
which a linear approximation provides a reliable guide to the behavior of a
non-linear system in the neighborhood of a steady state.
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A function is analytic if it is sufficiently smooth that its Taylor approximation
converges to the true value of the function.146 If a function is analytic in a
set that excludes a particular point, then that point is said to be a singularity,
or a singular point. For example, the function 1

x
is analytic at all points

other than x = 0, a singularity.

We return to the general two dimensional system above:

ẋ = F (x, y) and ẏ = G(x, y), (B.4)

and we assume that both functions are analytic. This assumption means
the we can take a first order Taylor expansion in the neighborhood of the
steady state. The first order expansion of F is

ẋ = F (x∞, y∞) + Fx(x∞, y∞) (x− x∞) + Fy(x∞, y∞) (y − y∞)

+ o (x− x∞, y − y∞) .

The term o (x− x∞, y − y∞) (“little oh”) contains the higher order terms of
the expansion, and satisfies

lim
∆→0

o (x− x∞, y − y∞)

∆
= 0,

where ∆ =
√

(x− x∞)2 + (y − y∞)2 is the Euclidean norm of the vector

(x− x∞, y − y∞) The equality states that the contribution of all higher
order terms gets small faster than does ∆, as ∆ approaches 0.

We simplify the expansion using F (x∞, y∞) = 0 and defining X = (x− x∞)
and Y = (y − y∞), the difference between a state variable and its steady
state. Also using Ẋ = ẋ (because x∞ is a constant), we write the first order
approximation as

Ẋ = aX + bY

with a = Fx(x∞, y∞) and b = Fy(x∞, y∞). Using the same procedure and
analogous definitions, we write the expansion of the ẏ equation as

Ẏ = cX + dY

with c = Gx(x∞, y∞) and d = Gy(x∞, y∞). Notice that by replacing the
variables x, y with X, Y , their deviations from the steady state, we obtain a

146See Judd page 196 for a rigorous definition, in terms of a polynomial in the complex
plane.
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system of linear ODEs whose steady state is (0, 0). This fact simplifies the
notation because it means that we do not have to carry around a symbol for
the steady state.

If we had an n−dimensional system of non-linear ODEs we would use the
same procedure to obtain a first order approximation, a system of linear
ODEs

ż = Az. (B.5)

For our two-dimensional system

z =

(
X
Y

)
and A =

[
a b
c d

]
.

The Theorem of the First approximation, which applies for a general n−dimensional
system, states

Theorem 13: If the ODEs are analytic in the neighborhood of a steady
state, then: (i) If the steady state of the linear approximation, equa-
tion B.5, is asymptotically stable, then the steady state of the original
non-linear system is asymptotically stable; and (ii) If the steady state
of the linear approximation is unstable, then the steady state of the
non-linear system is unstable.

If the steady state of the linear system is either asymptotically stable or un-
stable, then the steady state of the original system has the same property.
The only time the approximation is uninformative is when its steady state
is stable but not asymptotically stable. In that case, we can make no con-
clusions about the stability of the original system. This ambiguity is quite
intuitive. Recall that a steady state is stable but not asymptotically stable
if all paths emanating from initial conditions near the steady state remain
near, but do not converge to the steady state. This behavior is a knife-edge,
in the following sense. If the steady state was slightly more attractive, paths
beginning near it would converge to it, and if it was slightly less attractive,
paths beginning near it would diverge from it. When the approximation
exhibits this kind of knife-edge behavior, we cannot tell whether the system
being approximated has the same knife-edge behavior, or falls to one side (is
asymptotically stable or unstable).
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The next task is to determine the stability of the linear system. Here we use
the n−dimensional system, equation B.5. If this system consisted of a single
equation, i.e. if z were a scalar with ż = az, the solution would be trivial.
We considered this example in Section B.1 where we saw that the solution
is z(t) = z0e

at, where z0 is the initial condition. Thus, the linear equation
is asymptotically stable if a < 0, it is stable but not asymptotically stable if
a = 0, and it is unstable if a > 0. We use a multi-dimensional analog, based
on eigenvalues, to assess the stability of the n− dimensional system.

An eigenvalue of the matrix A, λi and its corresponding eigenvector, pi, are
solutions to

Api = λipi.

Using the n by n identity matrix I we can rewrite this equation as

(A− Iλ) pi = 0,

which has a non-trivial solution if and only if

|A− Iλ| = 0, (B.6)

where |A− Iλ| is the determinant of the matrix A − Iλ. Equation B.6 is
the characteristic equation for the matrix A. It is an n degree polynomial
in λ, and thus has n roots – not necessarily real and not necessarily unique.
We construct the diagonal matrix of eigenvalues

Λ =


λ1

λ2
...

λn


and the matrix whose i’th column is the i’th eigenvector

P =
[
p1 p2 ... pn

]
.

With this notation we write the system

AP = PΛ.

There are several possible cases, depending on whether the eigenvalues are
real or complex, and on whether the matrix P of eigenvectors is non-singular.
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The treatment here is not exhaustive; Boyce and DiPrima (??) and other
ODE textbooks provide detailed treatments.

If P is non-singular (its inverse exists) we can premultiply the previous equa-
tion by P−1 to obtain

P−1AP = Λ.

In this case, define w = P−1z, or Pw = z, so that

ẇ = P−1ż = P−1Az = P−1APw = Λw.

Thus, when P is non-singular we can replace the n−dimensional system of
linear ODEs with n independent linear ODEs.

If, in addition to the non-singularity of P , the roots λi are all real, then the
solution to each of these equations is wi (t) = wi (0) e

λit, where wi (0) is the
initial condition for the i’th element. Because Λ is a diagonal matrix, we
can write147

eΛt =


eλ1t

eλ2t

...
eλnt

 .
With this notation we can stack up the solutions to the individual ODEs to
write the system in matrix notation, as

w(t) = eΛtw(0).

Using the fact that w = P−1z we can rewrite this system in terms of the
original variables, z:

P−1z(t) = eΛtP−1z(0) =⇒
z(t) = PeΛtP−1z(0) = PeΛtk

with k = P−1z(0), a linear combination of the initial conditions. It is
instructive to write this system out as

z(t) = k1p1e
λ1t + k2p2e

λ2t + k3p3e
λ3t + ....+ knpne

λnt. (B.7)

In words, the vector z(t) is a linear combination of n vectors pi each multiplied
by eλit.

147Caution: for a non-diagonal matrix A, eA does not equal the matrix whose (i, j)
element is exp (aij).
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Thus, when P is non-singular and the eigenvalues are real, we conclude that
the steady state of the linear system is asymptotically stable if and only if all
eigenvalues are negative. The steady state is stable but not asymptotically
stable if some eigenvalues are 0 and the rest are negative. A steady state is
unstable if any of the eigenvalues are positive.

A saddle point is a particular kind of unstable steady state, in which there
are some positive and some negative eigenvalues. For example, suppose that
λi < 0 for i = 1, 2...s and the remaining eigenvalues are positive or zero. If
it happens to be the case that ki = 0 for i ≥ s+ 1, then using equation B.7
we have

z(t) = k1p1e
λ1t + k2p2e

λ2t + k3p3e
λ3t + ....+ kspse

λst.

Because all of the exponents in this expression are negative, the sum con-
verges to 0 as t→ ∞. Setting t = 0 in the equation above we have

z(0) = k1p1 + k2p2 + k3p3 + ....+ ksp.

This equation states that the initial value of z, z(0), is a linear combination
of the eigenvectors associated with the stable (i.e. negative) eigenvalues.

Corresponding to a saddle point, there is a stable manifold, defined as the set
of initial conditions from which a path converges to the steady state. Any
path emanating from an initial condition not in the stable manifold, diverges,
i.e. it eventually moves away from the steady state. In the linear model, the
stable manifold is a hyperplane. For example, if there is a single negative
eigenvalue, the stable manifold has dimension 1, i.e. it is a line; if there are
two negative eigenvalues, the stable manifold is a plane. Systems of non-
linear ODEs can also have saddle points and corresponding stable manifolds.
These tend to be curved. For example, in the case of a single negative
eigenvalue, the stable manifold is a curve rather than a line, and in the case
of two negative eigenvalues the stable manifold is a warped two-dimensional
surface rather than a plane.

Thus far we have considered only the case where the eigenvalues are real
and the matrix of eigenvectors is non-singular. If P is non-singular but
some of the roots are complex, the solution becomes more complicated. For
illustration, suppose that λ1 = α + βi, λ2 = α − βi, where α β are real
numbers and i is the imaginary number,

√
−1, and all other eigenvalues are

real. The first two eigenvectors are also complex, i.e. they take the form
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η ± νi, where η and ν are vectors. In this case, the solution to the linear
system has the form

z(t) = k1θ (t) + k2ρ (t) + k3p3e
λ3t + ....+ knpne

λnt

with

θ (t) = eαt (η cos βt− ν sin βt) and ρ (t) = eαt (η cos βt+ ν sin βt) . (B.8)

In this case, stability depends on the real part of the complex eigenvalue, α.
For example, if all of the real eigenvalues are negative, then the steady state
is asymptotically stable if α < 0, it is stable but not asymptotically stable if
α = 0, and it is unstable if α > 0.

Finding the eigenvectors requires solving a polynomial of degree n, which
may be a daunting task. Two facts about square matrices helps in some
cases:

trace (A) =
n∑

i=1

λi and |A| = Πn
i=1λi. (B.9)

For our two-dimensional system(
Ẋ

Ẏ

)
=

[
a b
c d

](
X
Y

)
, (B.10)

we have trace(A) = a+b ≡ p and |A| = ad−bc ≡ q. Using the characteristic
equation B.6 we have∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = λ2 − IPλ+ q = 0

⇒ λ =
p±

√
Γ

2
,

with Γ = p2 − 4q, the discriminant of the quadratic equation.

Figure 5 (from Boyce and DiPrima) summarizes a great deal of information
about the two-dimensional system, in terms of the trace, determinant and
discriminant (p, q, and Γ) of the matrix A:

• If q < 0 then both roots are real; one root is positive and the other
negative, so the steady state is a saddle point.
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• If q > 0 > p (the second orthant of the (p, q) plane) then both roots
must be of the same sign (because q = λ1λ2 > 0) and at least one root
must be negative, or have negative real part (because λ1+λ2 = p < 0).
Therefore, both roots must be negative, or have negative real part, so
the steady state is asymptotically stable.

Case 1 If Γ < 0, i.e. at a point above the curve not on the q axis,
then the roots must be complex, so the solution depends on the sine and
cosine of t, as in equation B.8. In this case, the trajectory is a stable
spiral.

Case 2 If Γ > 0, i.e. at a point in the second quadrant below the curve,
then both roots are real and negative. Here the solution is referred to
as a stable improper node.

• If q > 0 and p > 0 (the first orthant of the plane), then both roots must
be of the same sign, and at least one must be positive, or have positive
real part. Therefore, both roots must be positive or have positive real
part, so the steady state is unstable.

Case 3 If Γ < 0, i.e. at a point above the curve not on the q axis, then
the roots are complex, so the solution depends on the sine and cosine of
t, as in equation B.8. In this case, the trajectory is an unstable spiral.

Case 4 If Γ > 0, i.e. at a point in the first quadrant below the curve,
then both roots are real and positive. Here the solution is an unstable
improper node.

• If q > 0 = p then the roots are imaginary (i.e. the real part is 0). In this
case, the trajectory is an undamped orbit, and the steady state is known
as a stable center. This steady state is stable but not asymptotically
stable.

• If q > 0 = Γ then the two roots are equal. When both are negative
(orthant 2) the steady state is known as a stable node; when both are
positive (orthant 1) the steady state is an unstable node.

The above list of conditions for the various types of steady states are neces-
sary and sufficient. For example, if q < 0 we know that the discriminant is
positive, so we know without further calculation that the roots are real.
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B.4 Back to the predator-prey model

We now use the results of Section B.3 to study the steady states of the
predator-prey model from Section B.2.

z̄ ẑ
a = Fx −ωx̄ A− 2ωx̂
b = Fy −Bx̄ −Bx̂
c = Gx Cȳ 0
d = Gy −µȳ Cx̂−D

Table 1: partial derivatives of predator-prey model

Table 1 collects the partial derivatives of the predator-prey model, evaluated
at the interior steady state z̄ and the steady state on the x axis, ẑ. The
variables x̄, ȳ, x̂ and ŷ are the coordinates of the two points.

Evaluated at z̄, the trace is p = −ωx̄ − µȳ < 0 and the determinant is
q = (ωµ+BC) x̄ȳ. Because the trace is negative, at least one root must
be negative, and because the determinant is positive, the roots have the
same sign. Therefore, both roots are negative. Moreover, the discriminant
is positive, so both roots are real. Thus, the interior equilibrium z̄ is a
stable improper node, i.e. it is asymptotically stable. The Theorem of the
First Approximation implies that the interior equilibrium of the original non-
linear system is also asymptotically stable. A problem set asks the student
to determine the stability of the the other steady state, z̄.

In the Volterra-Lotke model, where ω = µ = 0, there is no congestion (as
defined above). In the absence of predators, the prey grows without bound.
Linearization in the neighborhood of the interior equilibrium shows that there
exist imaginary eigenvalues, i.e. ones for which the real part is 0. Based
on figure 5, we know that in this case the linear system is stable, but not
asymptotically stable, so the Theorem of the First Approximation provides
no information about the stability in the original nonlinear system. Clark
(pp ??) shows that this system can be solved in closed form.

B.5 More on saddle points

Autonomous optimal control models with a single state variable can often
be studied using a two-dimensional phase portrait. A steady state in these
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models is always (barring pathologies) a saddle point, so there is a one-
dimensional stable manifold – a line in the linear approximation and a curve
in the original non-linear system. Trajectories beginning on the stable man-
ifold converge to the steady state, and all others diverge. This point will
be important in the context of optimal control, in Chapter xx. Here we
provide intuition for why saddle points arise in optimal control settings, and
we present some additional concepts.

Consider the optimal control problem where the state variable is the biomass
of fish and the control variable is harvest. Part of the data of the problem is
an equation of motion for the stock of the fish, a differential equation for the
stock, as a function of the stock and the harvest. Using techniques described
in Chapter xx below, we can use the necessary condition for optimality to
obtain a differential equation that the optimal harvest level must satisfy.
This differential equation describes the change in harvest as a function of
the current harvest and the current stock. This differential equation is
endogenous, in the sense that it emerges from the optimality conditions; in
contrast, the differential equation for the stock of fish is exogenous, because
it is part of the statement of the optimization problem.

The differential equations for the stock and for the harvest comprise a pair
of differential equation, much as in the predator-prey model discussed above.
There is an important difference, however. In the predator-prey model both
variables are stock variables, and it is natural to regard the values of both
variables as predetermined at a point in time. In the optimal control context,
the biomass of fish is a state variable, and is predetermined at a point in time;
its initial condition is given. In contrast, the harvest level at the initial time
is not given; the purpose of the analysis is to determine its value.

In the interest of simplicity, we assume here that there is a unique interior
steady state to the pair of differential equations, one describing the change
in the stock and the other describing the change in the harvest; moreover,
we assume (as is the case in most problems) that it is optimal to drive the
biomass of fish and the harvest to that steady state. This information,
together with the differential equations, is enough in principal to obtain the
optimal solution. Here we provide intuition for the fact that the steady state
must be a saddle point.

Consider the alternatives. If all trajectories diverge from the steady state,
then there is obviously no trajectory leading to the steady state. That
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conclusion is inconsistent with our statement that it is optimal to drive the
system to the steady state. If all trajectories converge to the steady state,
then the optimality conditions, transformed into a differential equation for
harvest, are useless in identifying the optimal trajectory – simply because
all trajectories converge. The remaining possibility is that one trajectory
converges and all others diverge. But this is precisely what it means for the
steady state to be a saddle point.

Our discussion of saddle points in Section B.3 noted that the dimension
of the stable manifold equals the number of stable eigenvalues. In the
two-dimensional system arising from the scalar optimal control problem, the
statement that the steady state is a saddle point means that there is one
stable eigenvalue, i.e. the dimension of the stable manifold is 1: a curve in
biomass-harvest space. This stable manifold has another name: it is the
graph of the control rule, the function that gives the optimal harvest as a
function of the biomass of fish.

We do not mean to give the reader the impression that all interesting eco-
nomic problems, or even all two-dimensional problems, involve saddle points.
For example, there is a large literature in macroeconomics on the indetermi-
nacy of competitive equilibria. In a class of these models, there is a unique
steady state, but that steady state is a stable node, meaning that there are in-
finitely many paths that converge to it. In this case there are unaccountably
many rational expectations competitive equilibria. This situation can arise
in a variety of circumstances, and is often associated with models containing
strong non-convexities.

Two-dimensional models with a saddle point contain a pair of separatrices.
One separatrix is the trajectory that converges to the steady state; this is the
graph of the optimal control rule. The other separatrix is a trajectory that
emanates from the saddle point. These two separatrices divide the phase
plane into four regions. Because trajectories do not cross, and because each
separatrix is a trajectory, no trajectory crosses a separatrix. Therefore,
a trajectory emanating from a point inside one of the four regions, i.e. a
point not on a separatrix, remains in that region. A point on the separatrix
remains on that separatrix, either moving toward the saddle point or moving
away from it. The regions created by the separatrices are not the same as
the isosectors, created by the 0-isoclines. Trajectories do cross isoclines.

In the two-dimensional linear model, the separatrices are straight lines through
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the saddle point. We already noted that the stable manifold – one of the
two separatrices – is a line, and the same is true of the other separatrix. In a
higher dimensional linear model with a saddle point, the convergent separa-
trix is the hyperplane spanned by the eigenvectors associated with the stable
eigenvalues.

The fact that the separatrices are straight lines gives an alternative way of
computing them, that bypasses the need to find the eigenvalues and eigen-
vectors. Consider the linear system in equation B.10. Each separatrix is a
straight line, so it can be written as Y = sX for some constant s, so dY

dX
= s

on a separatrix. On any trajectory we also have

Ẏ

Ẋ
=
dY

dX
.

On a separatrix, we can rewrite the original system as

Ẋ = aX + bsX and ẏ = cX + dsX.

Using these equations we have

dY

dX
= s =

(c+ ds)X

(a+ bs)X
=

(c+ ds)

(a+ bs)
=⇒

s (a+ bs) = c+ ds =⇒
bs2 + (a− d) s− c = 0. (B.11)

We can solve this quadratic to get the two values of s, the slopes of the
two separatrices. We can then identify which is the stable and which is
the unstable separatrix using the fact that a trajectory on the stable path
converges to the steady state, and a trajectory on the unstable path diverges.
On both paths, the variable X obeys Ẋ = (a+ bs)X. One root of equation
B.11 satisfies (a+ bs) < 0. Denote this root as s∗, the root associated with
the stable saddle path. The other root satisfies (a+ bs) > 0; this root is the
slope of the unstable separatrix.

Of course, if this linear system is the result of taking an approximation of a
non-linear system, then the straight-line separatrices of the former are merely
an approximation of the curved separatrices of the latter. The slope of the
approximation equals the tangent to the separatrices of the original system,
evaluated at the steady state where the approximation is performed.
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Although the information above may appear abstract, it has practical value.
If the two dimensional non-linear system is derived from a one-dimensional
optimal control problem, we have described a simple means of obtaining an
approximation of the optimal control rule. Recall that we defined X and Y
as deviations from a steady state value. If x is the biomass of fish, and y is
the harvest, then X and Y are the deviations of the stock and harvest from
their steady state values. Setting the two original, nonlinear, differential
equations equal to 0 gives two algebraic equations in X and Y . Solving
these equations gives the (or a) steady state. The linear approximation
of this system at the (or a) steady state gives the parameters of the linear
system, a, b, c and d. Using these values we obtain the stable root, s∗. Our
linear approximation of the optimal control rule is y = s∗X.

The reader should notice that the algorithm sketched here for approximating
an optimal control rule parallels the algorithm that we illustrated, for a
problem in discrete time, in Section ... (the last section in Chapter 1). See
the problem set at the end of this chapter.

B.6 Examples of dynamic systems in economics

Here we use two examples that illustrate the power of the methods described
in this chapter. The first example, due to Brander and Taylor (1998) uses
a model similar to the predator-prey model to study population dynamics
in a resource-constrained economy. The second example, due to Krugman
(1991) uses a linear model to illustrate the possibility of multiple rational
expectations equilibria; for a set of initial conditions there are different ra-
tional expectations competitive that take the economy to different steady
states. (Benabou and Fukau (1993) correct a technical mistake in Krug-
man’s analysis.) We then consider a third example (Karp and Paul 20xx),
related to the first two, which indicates the kinds of complexities that arise
in higher dimensional systems, and shows how the intuition obtained from
lower dimensional systems may not be robust.

B.6.1 Population dynamics on Easter Island

A simple general equilibrium model that includes a renewable resource de-
scribes the rise and fall of an isolated civilization, such as the one on Easter
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Island.148 The economy produces two goods and has Ricardian technology.
The environment, a stock variable, affects the marginal productivity of labor
in one sector. The other state variable is the stock of human population. An
increase in the environment encourages growth of human population because
it becomes easier to get food. An increase in human population degrades the
environment, since extraction increases.

We can re-interpret the predator-prey model described in Section B.2, treat-
ing the environment as the prey and the human population as the predator.
The analysis proceeds by linearizing dynamics around the interior steady
state and checking whether the roots are real or imaginary. The authors
show that a stable interior equilibrium can be either an improper node (real
roots) with monotonic adjustment or a spiral node (imaginary roots), with
trajectories spiralling into the steady state. Spirals occur if the intrinsic
growth rate of the environment is sufficiently small. Using plausible param-
eter values, they show that it is possible to get a trajectory in which human
population increases for a time, then crashes, eventually reaching a low level.

[Details to be added later.]

B.6.2 Multiple rational expectations equilibria

The economy consists of two sectors, Agriculture and Manufacturing. There
is fixed stock of a single input, labor, normalized to 1. There is full employ-
ment, so if L units of labor are in the Manufacturing sector, then 1−L are in
Agriculture. Output prices are fixed, so this model represents a small open
economy. There are constant returns to scale in Agriculture, with the value
of marginal productivity equal to c. There are increasing returns to labor in
Manufacturing, where the value of marginal product equals a+ bL. In both
sectors the wage equals the value of marginal product. Costly adjustment
between sectors makes it possible, outside of a steady state, for there to be
workers in both sectors even though the wage is different in the two sectors.
In a steady state either one sector must close down or the wages in the two
sectors must be the same.

The flow of migrants into Manufacturing is L̇, which is negative if workers
are leaving the sector and positive if workers are entering the sector. The

148Later add a note discussing the controversy about Easter Island, see Jared Diamond
and critics of his interpretation.
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total cost of migration is γ
2

(
L̇
)2
. Here we have a model of convex adjust-

ment costs, similar to that considered in Chapter 1. Each migrant pays the

marginal cost, which equals γ
∣∣∣L̇∣∣∣. The reason for the absolute value sign

will be apparent shortly. All parameters are positive. The wage differential
at a point in time is m (L) = a− c+ bL. We assume that

c > a and a+ b > c. (B.12)

The first inequality means that if there are no workers in Manufacturing, the
wage in Agriculture is greater than the wage obtained by a single worker who
moves to Manufacturing. The second equality means that if all workers are
in Manufacturing, the wage in that sector is greater than the wage obtained
by a single worker who moves to Agriculture. These parameter assumptions
imply that there are two stable steady states: L = 0 and L = 1. If all
workers are in a particular sector, no worker has an incentive to leave that
sector.

We now consider the representative worker’s migration decision. Suppose
that all migration stops at time T ; this variable could be infinite, but in
this model turns out to be finite. At or after time T migration for a single

worker is costless, because the price of migration is
∣∣∣L̇∣∣∣ = 0. By moving

from Agriculture to Manufacturing at time t rather than at time T a worker
obtains the present value of the wage differential

χt =

∫ T

t

e−r(τ−t)m (τ) dτ, (B.13)

where r is the worker’s discount rate. This quantity could be either negative
or positive. Differentiating, we have

χ̇ = rχ−m. (B.14)

Equation B.14 is an example of a no-arbitrage relation that appears through-
out economics. We can think of χt as the value or price of the “asset”: being
in the Manufacturing sector at time t. Therefore, χ̇ is the capital gain of this
asset. The wage differential m is analogous to a dividend: it equals the
payment that the asset holder obtains at time t. If the price of the asset is
χ, and the opportunity cost of income per unit of time is r, then the oppor-
tunity cost of holding the asset is rχ. The equation states that the capital
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gains plus dividend, χ̇+m, equals the opportunity cost of holding the asset
rχ.

The variable χ is sometimes referred to as a jump variable. Unlike physical
stocks, whose values at a point in time are predetermined, the initial condi-
tion of a jump variable is endogenous; it depends on what happens in the
future. Notice from equation B.13 that the value of χt depends on future
values of m.

An individual takes prices and decisions of all agents, both current and future,
as given. In an equilibrium with non-zero migration, each individual who
migrates must be indifferent between migration and remaining in the same
sector. This indifference requires (when L̇ ̸= 0)

γL̇ = χ, or L̇ =
χ

γ
,

i.e. a migrant pays exactly what it is worth to migrate. For example, if
L̇ > 0 then workers are moving into the Manufacturing sector, and χ is
positive. If workers are moving into Agriculture (L̇ < 0) migrants pay −γL̇
and obtain the asset “not being in Manufacturing”, whose value is −χ.
In matrix form, the equilibrium conditions for this model are(

χ̇

L̇

)
=

[
r −b
1
γ

0

](
χ
L

)
. (B.15)

The problem set asks the reader to confirm several features of this model,
which we summarize here. There is an interior equilibrium (0 < L∗ < 1)
which is always unstable, and two stable boundary equilibria, L = 0 and
L = 1. (We already explained the reason for the boundary equilibria.) The
interior equilibrium is an unstable spiral if

r2γ − 4b < 0. (B.16)

Figure 6 shows the phase portrait in this case. One equilibrium trajectory
spirals counter-clockwise away from the unstable steady state, eventually
hitting the stable steady state L = 0. The figure shows the largest value of L,
denoted L2, on this spiral. A second equilibrium trajectory spirals clockwise
away from the unstable steady state, eventually reaching the stable steady
state L = 1. The smallest value of L on this spiral is shown as L1. There
are uncountably many non-equilibrium trajectories, not shown, that satisfy
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equation B.15. The problem set asks the reader to discuss the equilibrium
condition that eliminates all of the spirals not shown. For initial conditions
L0 ∈ (L1, L2) there are many rational expectations equilibria. One family
of equilibria takes the economy to L = 1 and the other family takes the
economy to L = 0. For each family, there is one monotonic trajectory, the
one that starts on the outer-most spiral, and many trajectories that involve
non-monotonic adjustment.

If inequality B.16 is reversed, the unstable steady state is an unstable node;
see Figure 7. In that case, all trajectories are monotonic and there is a
unique equilibrium from all initial conditions except for the knife-edge case
where L0 = L∗. If the initial condition is L0 < L∗ the economy eventually
specializes in Agriculture, and if the inequality is reversed, the economy
eventually specializes in Manufacturing.

Inequality B.16 has an economic interpretation. The inequality holds if the
parameter that determines the extent of non-convexity, b, is large relative to
the discount rate, r, and the cost-of-adjustment parameter, γ. When the
inequality holds, “expectations matter”, in the sense that the equilibrium
that results depends on what agents believe will happen in the future. When
agents are patient (r is small) or when it is inexpensive to migrate (γ is small),
or when the degree of increasing returns is high (b is large) the optimal
decision of an agent today is sensitive to what she thinks other agents will
do in the future, because those future actions determine the value of being
in a particular sector. In these circumstances, the optimal decision today
is sensitive to the agent’s beliefs about aggregate decisions in the future.
In contrast, if the agent is impatient, or adjustment costs are large, or the
degree of increasing returns is modest, current decisions are rather insensitive
to beliefs about the future. In this case, the rational expectations equilibrium
is unique and depends only on “history”, which determines the current level
of L.

A final point is worth emphasizing. In all cases in this model, there are
two steady states, with all labor employed either in Agriculture or in Man-
ufacturing. However, when inequality B.16 is satisfied there are multiple
equilibrium trajectories given initial conditions L0 ∈ (L1, L2), some of these
equilibrium trajectories approach one steady state, and other trajectories
approach the other steady state. In contrast, when inequality B.16 is not
satisfied there is generically a unique equilibrium trajectory from any initial
condition. The fact that there are multiple steady states does not mean



B.6 Examples of dynamic systems in economics 447

that there are multiple equilibria. Multiple equilibria exist if and only if
there is more than one equilibrium trajectory emanating from a given initial
condition.

B.6.3 History and expectations with two stock variables

Here we consider a model with two stock variables. In one interpretation
of this model, there are constant returns to scale in both Agriculture and
Manufacturing. However, Manufacturing creates pollution, a stock variable,
which decreases productivity in the agricultural sector, and there are convex
migration costs (as in Section B.6.2). In this model, the manufacturing wage
is constant, but the agricultural wage depends on the stock of pollution. The
wage differential depends not on the current allocation of labor, but on the
entire history of the past allocation: more labor in Manufacturing in the
past means higher past pollution flows, which create a higher current stock
of pollution and lower current agricultural productivity and wage.

In the second interpretation of this model, there is no pollution stock, but
a larger Manufacturing work force creates a higher flow of knowledge in
the Manufacturing sector, leading to a higher stock of knowledge in the
future, and thus higher future Manufacturing wage. Here, there are dynamic
increasing returns to scale in Manufacturing, unlike the static increasing
returns in Section B.6.2 where the manufacturing wage depends only on
current, not on past allocations of labor.

Despite their apparent differences, these two models are formally equivalent.
In both cases increased labor in Manufacturing today contributes to a stock
variable (pollution, which is bad of Agriculture, or knowledge, which is good
for Manufacturing) that increases the Manufacturing wage differential. In
the interest of simplicity, we consider here only the environmental interpre-
tation of the model.

The model contains three variables, the two stock variables and a forward-
looking or jump variable (analogous to χ in Section B.6.2). Graphical meth-
ods are of little use in this context. A linear version of the model is a
straightforward extension of the model in Section B.6.2, obtained by includ-
ing the additional stock variable. As in the simpler one-state model, in
the two-state model there is an interior unstable steady state and all steady
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states are on the boundary, i.e. all labor ends up in either Manufacturing or
Agriculture.

As with the one-state model, there can be a unique equilibrium. Just as
in the one-state model, a lower cost of migration (γ in the one-state model)
increases the measure of the set of other parameter values for which there
are multiple equilibria. Moreover, in the one-state model, a lower cost of
migration increases the measure of the set of initial conditions (L2 − L1)
for which there are multiple equilibria. In this sense, multiplicity is “more
likely” for lower costs of adjustment. In contrast, in the two-state model,
a decrease in migration costs can decrease the measure of the set of initial
conditions (a two-dimensional set) for which there are multiple equilibria.
In this sense, low costs of adjustment make multiplicity less likely.

To understand this reversal, consider what happens if we hold all parameters
constant except that we reduce the parameter that determines migration
costs (γ, above). This reduction makes possible large changes in labor
allocation over a short period of time. However, this parameter change
does not alter the function determining the dynamics of the environment
(although of course the actual trajectory does change). Even though labor
adjusts quickly, the environment remains sluggish. In this circumstance
the future wage differential depends – at least for an “appreciable period of
time” – primarily on the predetermined environmental variable, because in
the future labor will adjust quickly in response to wage differentials. Thus, it
is more likely (with the lower adjustment costs) that the equilibrium depends
on history, via the predetermined stock variables, than on beliefs about the
future. That is, lower adjustment costs make multiplicity of equilibria “less
likely” in the two-state model, whereas the opposite occurs in the one-state
model.
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B.7 Problems

1. (Section B.4) Confirm that the steady state ẑ is a saddle point, and
identify the separatrix.

2. (Section B.5) Elaborate on the parallels in the method of approximating
the control rule in the discrete time problem discussed at the end of
Chapter 1, and the method of approximating the control rule of the
continuous time optimal control rule in Section B.5.

3. Verify the description of the equilibrium to the rational expectations
model in Section B.6.2. (a) Confirm the directional arrows in Figures 6
and 7. (b) Show that inequality B.16 determines whether the unstable
equilibrium is a spiral or a node. (c) Notice that all the equilibria
in either figure intersects the boundary (L = 0 or L = 1) at χ =
0. Explain why a competitive equilibrium must have this boundary
condition. (d) If you were given numerical values for the parameters,
how would you numerically determine the values of L1 and L2 in the
case where inequality B.16 holds. (Hint: think “backwards”.)
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